

ФИЗИКА И АСТРОНОМИЯ —

DOI: https://doi.org/10.15688/mpcm.jvolsu.2022.2.5

Дата поступления статьи: 02.10.2021 Дата принятия статьи: 01.11.2022

ОПРЕДЕЛЕНИЕ ПРИМЕСНЫХ МОД В СПЕКТРАХ ДИССОЦИАТИВНОГО ЗАХВАТА ЭЛЕКТРОНОВ МОЛЕКУЛАМИ БЕНЗОФУРАН-3(2H)-ОНА И БЕНЗОФУРАН-2(3H)-ОНА¹

Мансаф Масхутович Таюпов

Младший научный сотрудник лаборатории физики атомных столкновений, Институт физики молекул и кристаллов, Уфимский федеральный исследовательский центр РАН tayupovmansaf@yandex.ru https://orcid.org/0000-0002-2876-3910 просп. Октября, 151, 450075 г. Уфа, Российская Федерация

Ангелина Вячеславовна Маркова

Лаборант-исследователь лаборатории физики атомных столкновений, Институт физики молекул и кристаллов, Уфимский федеральный исследовательский центр РАН login.markova@yandex.ru https://orcid.org/0000-0002-7846-6500 просп. Октября, 151, 450075 г. Уфа, Российская Федерация

Алексей Михайлович Сафронов

Младший научный сотрудник лаборатории физики атомных столкновений, Институт физики молекул и кристаллов, Уфимский федеральный исследовательский центр РАН prozzy95@gmail.com https://orcid.org/0000-0002-2922-170X просп. Октября, 151, 450075 г. Уфа, Российская Федерация

© Таюпов М.М., Маркова А.В., Сафронов А.М., Галеев Р.В., 2022

49 =

ФИЗИКА И АСТРОНОМИЯ =

Рустэм Вильевич Галеев

Кандидат физико-математических наук, научный сотрудник лаборатории физики атомных столкновений, Институт физики молекул и кристаллов, Уфимский федеральный исследовательский центр РАН gal_rust@mail.ru https://orcid.org/0000-0002-6655-5792 просп. Октября, 151, 450075 г. Уфа, Российская Федерация

Аннотация. Метод масс-спектрометрии отрицательных ионов резонансного захвата медленных (0–15 эВ) электронов был применен для выявления и определения типа примесей в исследованных образцах бензофуран-3(2H)-она и бензофуран-2(3H)-она. Анализ каналов распада молекулярных отрицательных ионов (ОИ) на стабильные фрагменты с использованием результатов квантово-химических расчетов в приближении теории функционала плотности позволил определить наиболее вероятные структуры примесных молекул, а также осколочных ионов ([M – H]⁻, [M – 2H]⁻, [M – CO]⁻).

Ключевые слова: масс-спектрометрия отрицательных ионов, резонансный захват электрона, квантово-химические расчеты, изомеры, примесные моды.

Введение

Масс-спектры положительных ионов изомеров часто совпадают или их различие не превышает погрешности эксперимента. Причина этого, в условиях ионизации электронами высоких энергий [1;6], при которых структурные различия изомеров нивелируются, в том числе из-за возможности изомеризации. При использовании же метода масс-спектрометрии отрицательных ионов резонансного захвата электронов (МС ОИ РЗЭ) ситуация несколько иная. Образование фрагментных ОИ происходит в основном путем прямого разрыва связей. Быстрый процесс диссоциации осуществляется без миграции атомов или функциональных групп, а автонейтрализация подавляет медленные перегруппировочные процессы. Само же сечение процесса РЗЭ растет нелинейно с уменьшением E_e и фактически пропорционально λ^2 (λ – длина волны электрона) [3]. Для тех случаев, когда в исследуемом соединении с низким сечением (например, углеводороды) имеется примесь, сечение которой близко к теоретическому пределу (а это случается при тепловых E_e), то эту примесь можно не только обнаружить, но и оценить ее концентрацию вплоть до сотых и даже тысячных долей процента, в зависимости от динамического диапазона системы регистрации. Избирательность метода обусловлена также тем, что компоненты смеси будут иметь резонансы при различных энергиях электронов [2].

Целью данной работы является определение принадлежности примесных мод в спектрах диссоциативного захвата электронов молекулами бензофуран-3(2H)-она (степень очистки 98%) и бензофуран-2(3H)-она (степень очистки 97%) к тем или иным изомерам этих веществ, либо к веществам примесей, участвующим в их синтезе. Для этого были сформулированы следующие задачи:

- С помощью стандартного метода DFT B3LYP/6-31G(d) вычислить энергии вакантных МО нейтральной молекулы и применить масштабирующий коэффициент для определения энергий вертикального захвата электрона по механизму резонанса формы.
- Оценить с помощью базисного набора 6-31+G(d) с минимальным добавлением диффузных функций термодинамические пороги образования фрагментов при ДЗЭ. Определить наиболее вероятные структуры осколочных ионов.
- 3) Провести анализ спектров ДЗЭ и выявить резонансные пики, которые ассоциируются с примесными модами.
- 4) Провести квантово-химические расчеты термодинамических порогов образования фрагментов при ДЗЭ для молекул: 2-бензофуранола, 3-бензофуранола, 2-(4H)-бензофуранона. Оценить вклад примесей данных изомеров в спектры ДЗЭ бензофуран-3(2H)-она и бензофуран-2(3H)-она.

Методика эксперимента и расчетов

Измерения проводились на статическом масс-спектрометре МИ-1201, переоборудованном для регистрации ОИ в режиме резонансного захвата электронов (РЗЭ). Схема экспериментальной установки, ее подробное описание и методика эксперимента приведены в работах [4;5]. Вкратце, сфокусированный пучок квазимонохроматических электронов пропускался через ячейку столкновений, заполненную газом исследуемого вещества при давлениях, отвечающих парным столкновениям. Токи образующихся отрицательных ионов регистрировались масс-спектрометрически (секторное магнитное поле) в зависимости от энергии налетающих электронов в диапазоне энергий 0-15 эВ. Полуширина распределения электронов по энергии составляла 0,4-0,5 эВ на полувысоте, ток электронов ~1µA, ускоряющее напряжение — 4 кВ. Калибровку шкалы энергии электронов проводили по максимумам кривых эффективного выхода (КЭВ — зависимость тока ОИ от энергии налетающих электронов) ионов SF₆, образованных захватом тепловых электронов молекулами SF₆. Исследованные образцы веществ были приобретены в компании «Сигма-Алдрич», продукты с номерами 12502 (бензофуран-3(2H)-он, степень чистоты 98%) и 124591 (бензофуран-2(3Н)-он, степень чистоты 97%). Вещества были исследованы без дополнительной очистки и испарялись в ячейку столкновений при температурах 50 °C и 120 °C соответственно. Молекулы исследуемых веществ достигали теплового равновесия путем многократных столкновений со стенками ячейки.

Рис. 1. Пространственная структура молекул бензофуран-2(3H)-она (I) и бензофуран-3(2H)-она (II)

51

ФИЗИКА И АСТРОНОМИЯ =

Оптимизация геометрической структуры исследованных молекул проводилась без ограничения на симметрию. Отсутствие мнимых частот являлось критерием истинности найденного основного состояния. Расчет энергетических характеристик проводился для температуры 298 °К. Интерпретация положений резонансных пиков проводилась с помощью расчетов методом DFT с использованием пакета Gaussian 09 [7]. Для оценки термодинамических порогов образования фрагментов при ДЗЭ применялся базисный набор 6-31+G(d) с минимальным добавлением диффузных функций.

Результаты и обсуждение

Токи масс-сепарированных ОИ, образованных при взаимодействии электронов с молекулами бензофуран-3(2H)-она и бензофуран-2(3H)-она, приведены в зависимости от энергии электронов на рисунке 2 (в порядке убывания интенсивности).

Рис. 2. Кривые эффективного выхода при ДЗЭ молекулами бензофуран-3(2H)-она (I) и бензофуран-2(3H)-она (II)

Как следует из КЭВ, при ДЗЭ в бензофуран-2(3H)-оне наблюдается очень интенсивный распад с образованием фрагмента $[M - CO]^-$ в двух резонансах при 1,08 и 1,45 эВ. Распады, связанные с образованием фрагментов $[M - H]^-$ (в двух резонансах при 1,08 и 4,64 эВ) и $[M - 2H]^-$ (в трех резонансах при 0,8, 5,3 и 9,8 эВ), являются менее интенсивными. В бензофуран-3(2H)-оне же осколочный ион $[M - CO]^-$ не образуется. В данном веществе так же наблюдаются распады с образованием $[M - H]^-$ (в широкой области от 0,29 до 1,35 эВ и пик около 7 эВ) и $[M - 2H]^-$ (при 0,12–0,6 и 4 эВ). В таблицах 1 и 2 показаны энергии максимумов, относительные интенсивности образования анионов, а также наиболее вероятные структуры отрицательно заряженных фрагментов.

Как показывают расчеты, в обеих молекулах отдельный друг от друга отрыв нейтральных атомов водорода требует больших энергий, чем отрыв с образованием стабильного H_2 . Несмотря на это, электрон-возбужденные резонансы, которые наблюдаются при энергиях 6 эВ и выше, говорят о том, что данный процесс все-таки возможен и детектируется.

Таблица 1

Anion	Neutral	Relative intensity, %	Peak energy, eV	Total Energy, eV
$C_7H_6O_1$	C^6O^2	100	1.08 1.45	0.29
$C_8H_5O_2$	H^{11}			1,04
$C_8H_5O_2$	${\rm H}^{12}$			1,04
$C_8H_5O_2$	H^{13}	5.88	1,08	2,98
$C_8H_5O_2$	H^{14}	0,00	4,64	2,87
$C_8H_5O_2$	H^{15}			3,23
$C_8H_5O_2$	H^{16}			3,17
$C_8H_4O_2$	${\rm H}^{11}{\rm H}^{12}$			1,24
$C_8H_4O_2$	${ m H}^{13}{ m H}^{15}$		0.8	2,54
$C_8H_4O_2$	${\rm H}^{14}{\rm H}^{16}$		5.3	2,42
$C_8H_4O_2$	${ m H}^{15}{ m H}^{16}$	0.14		2,64
$C_8H_4O_2$	$H^{11} + H^{12}$	0,14		5,73
$C_8H_4O_2$	$H^{13} + H^{15}$		9.8	6,91
$C_8H_4O_2$	$H^{14} + H^{16}$		5,0	7,03
$C_8H_4O_2$	$H^{15} + H^{16}$			7,12

Бензофуран-2(3Н)-он

Как показало компьютерное моделирование, пики, наблюдаемые при энергиях около 0–0,8 эВ, связанные с отрывом H₂, не соответствуют возможным порогам появления данных фрагментов у исследуемых веществ. Поэтому, данные резонансы были интерпретированы как проявления на КЭВ примесных мод. Для определения их принадлежности к тем или иным изомерам данных веществ, были проведены квантово-химические расчеты термодинамических порогов образования фрагментов при ДЗЭ для молекул: 2-бензофуранола, 3-бензофуранола, 2-(4H)-бензофуранона (результаты показаны в таблицах 3–5).

53 E

Relative intensity, % Anion Neutral Peak energy, eV Total Energy, eV H¹¹ $C_8H_5O_2$ 0,29 1,62 H^{12} $C_8H_5O_2$ 0,8 1,62 H^{14} 1,32 $C_8H_5O_2$ 2,86 100 H^{16} $C_8H_5O_2$ 7 2,99 H^{13} $C_8H_5O_2$ 7,5 3,09 $C_8H_5O_2$ H^{15} 3,18 $H^{11}H^{12}$ $C_8H_4O_2$ 1,27 $C_8H_4O_2$ $H^{14}H^{16}$ 2,35 $H^{15}H^{16}$ $C_8H_4O_2$ 2,52 H¹³H¹⁵ $C_8H_4O_2$ 0,6 2,62 12,5 H¹¹+H¹² $C_8H_4O_2$ 4 5,76 $H^{14} + H^{16}$ $C_8H_4O_2$ 6,83 $C_8H_4O_2$ $H^{15} + H^{16}$ 7,01 $C_8H_4O_2$ 7,10

Рис. 3. Пространственная структура молекул 2-бензофуранола (III), 3-бензофуранола (IV), 2-(4H)-бензофуранона (V)

Таблица 2

≡ФИЗИКА И АСТРОНОМИЯ≡

Таблица 3

Anion	Neutral	Relative intensity for Benzofuran-2(3H)-one, %	Peak energy, eV	Total Energy, eV
$C_8H_5O_2$	H ¹¹			2,26
$C_8H_5O_2$	${\rm H}^{12}$			2,91
$C_8H_5O_2$	${\rm H}^{13}$	5 00	1,08	2,69
$C_8H_5O_2$	H^{14}	0,00	4,64	3,12
$C_8H_5O_2$	${\rm H}^{15}$	-		3,05
$C_8H_5O_2$	H^{16}			-0,27
$C_8H_4O_2$	${\rm H}^{11}{\rm H}^{12}$			2,44
$C_8H_4O_2$	$H^{11}H^{13}$			2,32
$C_8H_4O_2$	$H^{11}H^{14}$			2,41
$C_8H_4O_2$	${\rm H}^{11}{\rm H}^{15}$			2,46
$C_8H_4O_2$	$H^{11}H^{16}$			-0,07
$C_8H_4O_2$	$H^{12}H^{13}$			2,72
$C_8H_4O_2$	$H^{12}H^{14}$		0,8	2,46
$C_8H_4O_2$	${ m H}^{12}{ m H}^{15}$	0,14	5,3	2,66
$C_8H_4O_2$	$H^{12}H^{16}$		9,8	-0,09
$C_8H_4O_2$	$H^{13}H^{14}$			2,59
$C_8H_4O_2$	$H^{13}H^{15}$			2,28
$C_8H_4O_2$	$H^{13}H^{16}$			-0,05
$C_8H_4O_2$	$H^{14}H^{15}$			2,52
$C_8H_4O_2$	$H^{14}H^{16}$			-0,13
$C_8H_4O_2$	$H^{15}H^{16}$			-0,07

2-Бензофуранол

Таблица 4

2(4Н)-Бензофуранол

Anion	Neutral	Relative intensity for Benzofuran-2(3H)-one, %	Peak energy, eV	Total Energy, eV
$C_8H_5O_2$	${\rm H}^{11}$			0,03
$C_8H_5O_2$	${\rm H}^{12}$			0,03
$C_8H_5O_2$	${\rm H}^{13}$	5.88	1,08	2,58
$C_8H_5O_2$	${\rm H}^{14}$	5,00	4,64	2,76
$C_8H_5O_2$	${\rm H}^{15}$			2,64
$C_8H_5O_2$	H^{16}			2,91
$C_8H_4O_2$	${\rm H}^{11}{\rm H}^{12}$			-
$C_8H_4O_2$	${\rm H}^{11}{\rm H}^{13}$		0,8	0,23
$C_8H_4O_2$	${\rm H}^{12}{\rm H}^{13}$	0.14	5,3	0,23
$C_8H_4O_2$	$H^{11}H^{14}$	0,14	9,8	0,18
$C_8H_4O_2$	${\rm H}^{12}{\rm H}^{14}$			0,18
$C_8H_4O_2$	$H^{11}H^{15}$			0,26

55 **=**

≡ФИЗИКА И АСТРОНОМИЯ ≡

Anion	Neutral	Relative intensity for Benzofuran-2(3H)-one, %	Peak energy, eV	Total Energy, eV
$C_8H_4O_2$	${ m H}^{12}{ m H}^{15}$			0,26
$C_8H_4O_2$	$H^{11}H^{16}$			0,23
$C_8H_4O_2$	${\rm H}^{12}{\rm H}^{16}$			0,23
$C_8H_4O_2$	${ m H}^{13}{ m H}^{14}$		0,8	2,67
$C_8H_4O_2$	${ m H}^{13}{ m H}^{15}$	0,14	5,3	2,65
$C_8H_4O_2$	${ m H}^{13}{ m H}^{16}$		9,8	2,64
$C_8H_4O_2$	${\rm H}^{14}{\rm H}^{15}$			2,44
$C_8H_4O_2$	${\rm H}^{14}{\rm H}^{16}$			2,3
$C_8H_4O_2$	${ m H}^{15}{ m H}^{16}$			2,15

Таблица 5

3-Бензофуранол

Anion	Neutral	Relative intensity for Benzofuran-3(2H)-one, %	Peak energy, eV	Total Energy, eV
$C_8H_5O_2$	${\rm H}^{11}$		0,29	3,45
$C_8H_5O_2$	${\rm H}^{12}$		0,8	3,18
$C_8H_5O_2$	${ m H}^{13}$	100	1,32	2,53
$C_8H_5O_2$	H^{14}	100	7	3,58
$C_8H_5O_2$	H^{15}		7,5	3,48
$C_8H_5O_2$	H^{16}			1,05
$C_8H_4O_2$	${\rm H}^{11}{\rm H}^{12}$			3,23
$C_8H_4O_2$	$H^{11}H^{14}$			2,98
$C_8H_4O_2$	${ m H}^{11}{ m H}^{15}$			3,16
$C_8H_4O_2$	${ m H}^{11}{ m H}^{16}$			1,27
$C_8H_4O_2$	${\rm H}^{12}{\rm H}^{14}$			3,09
$C_8H_4O_2$	${ m H}^{12}{ m H}^{15}$			2,75
$C_8H_4O_2$	${\rm H}^{12}{\rm H}^{16}$		0,6	1,11
$C_8H_4O_2$	$H^{13}H^{11}$	12,5	4	2,73
$C_8H_4O_2$	${ m H}^{13}{ m H}^{12}$			2,76
$C_8H_4O_2$	${ m H}^{13}{ m H}^{14}$			2,70
$C_8H_4O_2$	${ m H}^{13}{ m H}^{15}$			2,72
$C_8H_4O_2$	${ m H}^{13}{ m H}^{16}$			0,70
$C_8H_4O_2$	$H^{14}H^{15}$			2,96
$C_8H_4O_2$	$H^{14}H^{16}$			1,22
$C_8H_4O_2$	$H^{15}H^{16}$			1,24

Как показали расчеты, оба изомера бензофуран-2(3H)-она 2-бензофуранол и 2-(4H)-бензофуранон имеют пороги образования для осколочного иона [M – 2H]⁻ в диапазоне энергий гораздо ниже, чем для самого бензофуран-2(3H)-она. После анализа пространственных структур, расчета энергий разрывов связи с сравнением с пиками, на КЭВ, мы сделали вывод о том, что основной вклад, в данном случае в спектр, вносят примесные моды, связанные с 2-бензофуранолом. Осколочный ион [M – 2H]⁻

2-бензофуранола является крайне неустойчивым при диссоциации, причем энергия отрыва O-H связи поэтому в нем является отрицательной и составляет -0,27 эВ. Вкупе с отрывом водорода из положения H11 здесь происходит образование нейтрального H₂ при -0,07 эВ, что может объяснить пик на КЭВ при энергиях, близких к нулевым. По сходному же механизму возникает осколочный ион $[M - 2H]^-$ в изомере бензофуран-3(2H)-она-3-бензофуранола. Образование нейтрального H₂ здесь происходит при отрыве водорода из положения H13 и соединении его с атомом водорода, образованным при разрыве O-H связи при энергии 0,7 эВ.

Заключение

В работе исследован резонансный захват медленных (0–15 эВ) электронов молекулами бензофуран-3(2H)-она и бензофуран-2(3H)-она в газовой фазе. Образованные фрагментные отрицательные ионы были проанализированы масс-спектрометрически. Было показано, что на КЭВ обоих веществ, связанных с образованием фрагментарного иона [M – 2H]⁻, присутствуют примесные моды. Было выяснено, что этим примесным модам в спектре бензофуран-3(2H)-она соответствует примесь 3-бензофуранола, а в спектре бензофуран-2(3H)-она-2-бензофуранола. Было показано, что метод МС ОИ РЗЭ может быть эффективно использован для такого рода задач по поиску и выявлению макроколичества примеси в исследуемых веществах.

ПРИМЕЧАНИЕ

¹ Работа выполнена в рамках гранта в форме субсидий в области науки из бюджета Республики Башкортостан для государственной поддержки молодых ученых — аспирантов и кандидатов наук (НОЦ-ГМУ-2021).

СПИСОК ЛИТЕРАТУРЫ

1. Бочкарев, В. Н. Масс-спектры положительных и отрицательных ионов линейных метилфенилсилоксанов / В. Н. Бочкарев, А. Н. Поливанов, В. С. Фалько // Журн. общей химии. — 1978. — Т. 48, № 4. — С. 858–861.

2. Масс-спектрометрия отрицательных ионов в режиме резонансного захвата электронов / В. А. Мазунов, П. В. Щукин, Р. В. Хатымов, М. В. Муфтахов // Масс-спектрометрия. — 2006. — Т. 3, № 1. — С. 11–32.

3. О диссоциативном захвате электронов молекулами некоторых макроциклических соединений / М. В. Муфтахов, Г. М. Туймедов, Р. Ф. Туктаров, В. А. Мазунов // Химия высоких энергий. — 1996. — Т. 30, № 6. — С. 405–409.

4. Определение сродства к электрону на основе экспериментально измеренных времен жизни отрицательных молекулярных ионов производных кумарина / М. М. Таюпов, Р. Г. Рахмеев, Н. Л. Асфандиаров, С. А. Пшеничнюк // Математическая физика и компьютерное моделирование. — 2020. — Т. 23, № 3. — С. 45-59. — DOI: https://doi.org/10.15688/mpcm.jvolsu.2020.3.5.

5. Резонансный захват электронов органическими электроактивными молекулами / С. А. Пшеничнюк, А. В. Кухто, И. Н. Кухто, Н. Л. Асфандиаров // Хим. физика. — 2010. — Т. 29, № 11. — С. 82–96.

6. Хвостенко, В. И. Масс-спектры отрицательных ионов некоторых простых олефинов и кислородсодержащих соединений / В. И. Хвостенко, В. С. Фалько, И. Х. Аминев // Журн. орг. химии. — 1975. — Т. 11, № 3. — С. 665–669.

57 i

7. Gaussian 09 (Revision A.02) / M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani. Wallingford CT. Electronic text data. Mode of access: Gaussian, Inc., ____ https://www.researchgate.net/publication/260433987_Gaussian_09_Revision_A02. Title from screen.

REFERENCES

1. Bochkarev V.N., Polivanov A.N., Falko V.S. Mass-spektry polozhitelnykh i otritsatelnykh ionov lineynykh metilfenilsiloksanov [Mass Spectra of Positive and Negative Ions of Linear Methylphenylsiloxanes]. *Zhurn. obshchey khimii*, 1978, vol. 48, no. 4, pp. 858-861.

2. Mazunov V.A., Shchukin P.V., Khatymov R.V., Muftakhov M.V. Mass-spektrometriya otritsatelnykh ionov v rezhime rezonansnogo zakhvata elektronov [Negative Ion Mass Spectrometry in the Resonant Electron Capture Mode]. *Mass-spektrometriya*, 2006, vol. 3, no. 1, pp. 11-32.

3. Muftakhov M.V., Tuymedov G.M., Tuktarov R.F., Mazunov V.A. O dissotsiativnom zakhvate elektronov molekulami nekotorykh makrotsiklicheskikh soedineniy [Dissociative Capture of Electrons by Molecules of Some Macrocyclic Compounds]. *Khimiya vysokikh energiy*, 1996, vol. 30, no. 6, pp. 405-409.

4. Tayupov M.M., Rakhmeev R.G., Asfandiarov N.L., Pshenichnyuk S.A. Opredelenie srodstva k elektronu na osnove eksperimentalno izmerennykh vremen zhizni otritsatelnykh molekulyarnykh ionov proizvodnykh kumarina [Determination of Electron Affinity on Base of Experimentally Measured Lifetime of Molecular Negativa Ions of Coumarin Derivatives]. *Matematicheskaya fizika i kompyuternoe modelirovanie* [Mathematical Physics and Computer Simulation], 2020, vol. 23, no. 3, pp. 45-59. DOI: https://doi.org/10.15688/mpcm.jvolsu.2020.3.5.

5. Pshenichnyuk S.A., Kukhto A.V., Kukhto I.N., Asfandiarov N.L. Rezonansnyy zakhvat elektronov organicheskimi elektroaktivnymi molekulami [Resonance Capture of Electrons by Electroactive Organic Molecules]. *Khim. fizika* [Russian Journal of Physical Chemistry B: Focus on Physics], 2010, vol. 29, no. 11, pp. 82-96.

6. Khvostenko V.I., Falko V.S., Aminev I.Kh. Mass-spektry otritsatelnykh ionov nekotorykh prostykh olefinov i kislorodsoderzhashchikh soedineniy [Mass Spectra of Negative Ions of Some Simple Olefins and Oxygen-Containing Compounds]. *Zhurn. org. khimii*, 1975, vol. 11, no. 3, pp. 665-669.

7. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G. Gaussian 09 (Revision A.02). *Gaussian, Inc., Wallingford CT.* URL: https://www.researchgate.net/publication/260433987_Gaussian_09_Revision_A02.

DETERMINATION OF IMPURITY MODES IN THE SPECTRA OF DISSOCIATIVE ELECTRON ATTACHMENT BY BENZOFURAN-3(2H)-ONE AND BENZOFURAN-2(3H)-ONE MOLECULES

Mansaf M. Tayupov

Junior Researcher, Physics of Atomic Collisions Laboratory, Institute of Molecule and Crystal Physics, Ufa Federal Research Center RAS tayupovmansaf@yandex.ru https://orcid.org/0000-0002-2876-3910 Prosp. Octyabrya, 151, 450075 Ufa, Russian Federation

Angelina V. Markova

Research Laboratory Assistant, Physics of Atomic Collisions Laboratory, Institute of Molecule and Crystal Physics, Ufa Federal Research Center RAS login.markova@yandex.ru https://orcid.org/0000-0002-7846-6500 Prosp. Octyabrya, 151, 450075 Ufa, Russian Federation

Aleksey M. Safronov

Junior Researcher, Physics of Atomic Collisions Laboratory, Institute of Molecule and Crystal Physics, Ufa Federal Research Center RAS prozzy95@gmail.com https://orcid.org/0000-0002-2922-170X Prosp. Octyabrya, 151, 450075 Ufa, Russian Federation

Rustem V. Galeev

Candidate of Physical and Mathematical Sciences, Researcher, Physics of Atomic Collisions Laboratory, Institute of Molecule and Crystal Physics, Ufa Federal Research Center RAS gal_rust@mail.ru https://orcid.org/0000-0002-6655-5792 Prosp. Octyabrya, 151, 450075 Ufa, Russian Federation

Abstract. The method of negative ion mass spectrometry of resonant attachment of low energy electrons (0-15 eV) was used to identify and determine the type of impurities in the studied samples of benzofuran-3(2H)-one and benzofuran-2(3H)-one. An analysis of the decay channels of molecular negative ions (NIs) into stable fragments using the results of quantum-chemical calculations in the approximation of the density functional theory made it possible to determine the most probable structures of impurity molecules, as well as fragment ions ($[M - H]^-$, $[M - 2H]^-$, $[M - CO]^-$).

Key words: negative ion mass spectrometry, resonant electron capture, quantum chemical calculations, isomers, impurity modes.