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Abstract. We present the results of constructing models of galactic disks
with gas rotation curves that have zones of sharp changes in circular velocity.
Such models allow the development of shear hydrodynamic instabilities, in par-
ticular centrifugal instability and acoustic resonance-type instability. A sample of
galaxies with rotation curves containing regions of sharp negative gradients has
been formed. Models of these objects are intended for carrying out computational
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experiments aimed at studying the generation of spiral patterns due to the de-
velopment of hydrodynamic instability. We have identified objects whose rotation
curves in the central region cannot be modeled by the spheroidal bulge subsys-
tem, which indicates the presence of special components in composite models of
the stellar disk.

Key words: galaxies, rotation curves, hydrodynamic instabilities, decom-
position, circular velocity.

Introduction

Hydrodynamic instabilities due to the inhomogeneity of the gas flow can be responsible
for the most diverse manifestations at different scales in galaxies. Nonlinear stages of
unstable waves in gas are considered to explain the fine structure of astrophysical jets in
protostellar systems [21;32] and extragalactic jets associated with AGN [37], turbulence in
accretion disks (AD), including AD in close binary systems [11], turbulent viscosity in gas
disks of galaxies, protoplanetary systems, and circumplanetary rings [13-15].

The shear nature of the flow can be the cause of several instabilities in the gas.
The instability of the acoustic resonance type instability (ARTI) is accompanied by an
exponential increase in the amplitude of the waves with a specific energy exchange with
the main flow [10-12;15;21;22;26]. Amplitude growth is caused by the superreflection
effect when a wave falls on a shock or a layer with a strong gradient of the tangential
velocity component [11;12]. Such a layer of gas can lead to the reflection of waves with
an increase in amplitude compared to the incident wave. The second mechanism of this
instability is related to the resonant energy exchange between the sound wave and the main
flow in the critical layer [26]. The appearance of resonance requires that the tangential
velocity discontinuity be smoothed out and the velocity shear zone be of finite width [2; 33].
This thin critical layer is the source of instability of a resonant nature. The propagation of
small-scale unstable sound waves inside a thin disk can lead to gas turbulence, providing a
high level of turbulent viscosity [14; 15;27].

Of particular interest is the global instability in the gas disk, which is due to the
radial inhomogeneity of the gas disk rotation curve Vg(r) [7;8;26;36]. It is important to
note that there are a number of experimental studies confirming the theoretical conclu-
sions about the conditions for the development of such types of hydrodynamic instabilities.
Special equipment creates rotating shallow water with a given rotation profile, making it
possible to reproduce strong centrifugal instability in the presence of a local rotation zone
with rdV,/(V,dr) < n(® [6;28]. Such natural experiments demonstrate the formation
of trailing spiral patterns with different numbers of arms [8-10]. The richness of morpho-
logical features in the spiral structures of galaxies can also be provided by various kinds of
instabilities in the gas [13;17;25;26; 31].

The hydrodynamic instabilities listed above allow the formation of turbulent motions,
which is an important factor in the development of gravitational instability at different scales,
from planetesimals, planets, and star formation to the generation of spiral patterns and
morphological large-scale features in galaxies [3;19]. Moreover, processes in the gaseous
disk should be considered together with instabilities in the stellar subsystem [16;24;29; 31].

The central region of many spiral galaxies contains one of two types of reasonably dense
stellar structures, such as stellar bars (triaxial ellipsoids of rotation) or dense circumnuclear
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disks. The generation of a spiral structure in SB galaxies seems to be natural due to the
strongly nonaxisymmetric gravitational potential. Our efforts are aimed at studying the role
of dense circumnuclear stellar disks on the dynamics of gaseous subsystems in the central
regions of spiral galaxies. The construction of equilibrium models of galaxies with a complex
composite disk is necessary for the numerical simulation of instability at the nonlinear stage
as an initial state.

1. Rotation in the gravitational field of homogeneous disk

In this paper, we will consider simple models of matter distribution in the disk compo-
nent, which allows us to study rather arbitrary radial profiles of the circular rotation velocity
V. with controlled features. Such model dependences of the rotation profile make it possible
to subsequently analyze the stability of linear waves, revealing the conditions for the onset
of instability. This approach is a necessary and reliable basis for nonlinear hydrodynamic
modeling.

The balance of forces in a thin, axisymmetric gaseous galactic disk is [26]

9 £ _ 77 _ 1
r oc@or  or 0, (1)

where V9 is the velocity of gas rotation, p¥ is the pressure, o9 is the surface density of
gas, U is the total gravitational potential from all components. The second term in (1) is
small in galactic disks at typical parameters. Therefore, if we neglect it, then the rotation
velocity V; is equal to the circular velocity, that is

Ve=/r o~ (2)

Therefore, the equality V, = V. is satisfied below in all calculations.

The gravitational potential is constant (U = const) inside a thin homogeneous sphere
with radius R and coincides with the model of a point body of the same mass outside this
radius. A thin, homogeneous ring creates a gravitational potential, that is fundamentally
different from the potential of the sphere. The potential in the region r < R (R is the radius
of the ring) is

U(r) = —AGuK (k), 3)

where p is the linear density of the ring ([g/cm]), k = r/R, K(k) is the complete elliptic
integral of the first kind [20]. The potential of the outer region r > R is equal to

U(r) = —4GukK (k), (4)

where k = R/r.

The summation of the ring potentials makes it possible to calculate the potential of
a disk with an arbitrary radial density profile and the corresponding circular velocity in a
thin disk model. The degree of differential rotation is conveniently characterized by the local

parameter, that is
_din(Vy)
n(r) = din (r) (%)
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The dimensionless parameter n determines the inhomogeneity of rotation. The case n =
= —1/2 corresponds to the Keplerian rotation curve.

We use a system of units in which the characteristic radius is R = 1, the mass
of the component is M = 1, and G = 1 is the gravitational constant. This allows you
to easily compare the results of calculations for different disk models. Moreover, such
non-dimensionalization is often used in numerical simulations [18].
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Fig. 1. a) The rotation curve of V,,(r) in a thin homogeneous disk (solid line). For comparison,
the dashed curve shows the rotation curve V,(r) in the field of a homogeneous ball of the same
mass as the disk. b) Radial dependence of n(r) in homogeneous disk

Consider first the model of a homogeneous disk of finite radius:

[ og=const, ifr<R
“(’”){o, ifr>R ©)

where o is the surface density. The dimensionless surface density of such a disk is oy = 1/m.
Figure 1 shows the corresponding circular velocity. A homogeneous disk is an idealized
mathematical model, which leads to the appearance of singularities in the rotation curve.
More realistic models of inhomogeneous disks do not contain such features.

2. Rotation in the gravitational field of inhomogeneous disks

The surface density in the power disk model is

otr) =00 (1 —) , ™

where o« > 0, 09 = (1 4+ «)/mt. We use the following terminology. Disks with o« < 1 are

hard disks because do(r)
) o(r
ggrflz ar ®
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Disks with o« > 1 are soft, and the asymptotic solution is

. do(r)
}grll% dr

=0. 9)

Disk with o = 1 is said to be normal when executing:

. do(r) 4
1 —— 1
r% dr 7T (10)

Note also that the disk (7) at o« = 0 turns into the homogeneous disk considered above.
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Fig. 2. a) Circular velocity V.(r) in an inhomogeneous disk (7) in models of different hardness.
b) Radial dependences of the index n(r) in an inhomogeneous disk (7) of different hardness:
o = 1.50 (dotted line), x = 1.00 (dashed line), o« = 0.67 (solid line)

The method of summing the potentials of rings of different densities provides the
construction of the gravitational potential of a disk with an arbitrary density profile. The
potential of the inner region of the disk (r < 1) is equal to

Ur) = dr {/01 ko(er) K (k) dis + //IR o(r/k) K (k) %} | (11)

Computing for the outer region (r > 1) gives
1
Ur) = dr / ko(kr)K () dk. (12)
0

Figure 2 shows examples of V.(r) and n(r) calculations for model (7) in hard (e =
= 0.67), normal (« = 1.0), and soft (& = 1.5) disc variants. The curves n(r) for these disks
are shown in figure 2, b. These results allow us to draw the following conclusions about the
disk kinematics with an increase in the parameter o

ISSN 2587-6325. Matemart. (pusuka u Komnbiotep. mogeaupoBanue. 2023. T. 26. Ne 3 95 —/—



PHU3NKA U ACTPOHOMMUA

1) The maximum of the rotation curve V_.(r) slightly decreases and shifts noticeably towards
the center of the disk.

2) The inflection point near the radius » ~ 1 becomes more pronounced.

3) The width of the region with strong inhomogeneity of rotation decreases (see figure 2, b).

a4 \

Fig. 3. Region boundaries of —2 < n(r) < —1 on the plane (r, «) in models (7). The dashed line
shows the position of the inflection point of the curve V.(r)

The last two factors are directly related to the possibility of developing shear instabili-
ties in a light gaseous subsystem rotating in the field of a massive stellar disk (7).
The development of the Kelvin—Helmholtz instability requires the presence of the region
with n(r) < —1 in a weakly compressible medium. More important is the centrifugal in-
stability, for which the occurrence criteria are described in the monograph by Morozov and
Khoperskov [26]). We have calculated the boundaries of the zones where the index n(r)
takes the values n(r) = —1 and n(r) = —2, since the rotation curves of real galaxies with
n(r) < —2 apparently do not occur. Figure 3 shows the isolines n = —1 and n = —2 on the
plane of parameters (r, ). We conclude that Kelvin—Helmholtz instabilities and centrifugal
instability can manifest themselves in gaseous subsystems rotating in gravitational fields,
even in fairly soft models of stellar circumnuclear disks.

3. Rotation in the gravitational fields of compound disks

Real stellar disks of spiral galaxies in the first approximation can be represented by
a composite model, which consists of two disks. The main one is a massive disk with a
characteristic inhomogeneity scale along the radial coordinate Ry > R; and mass My > M;.
The second is a circumnuclear disk of radius R; and mass M, according to model (7). The
surface density of the main disk is described by the exponential law:

02(r) = Gor exp (—é) | (13)

96 M.M. Pejch, A.G. Morozovu, A.V. Khoperskov. Modeling a Double-Hump of Gas Rotation Curves



PHU3UNKA U ACTPOHOMUA

The mass of such a disk is My = 2mogeR3. In the system of units adopted by us (R; = 1,
M, = 1), the following conditions are satisfied: Ry = pr > 1, My = pp; > 1. The ratio of
surface densities at the center of compound disk (7), (13) is

Oo2 L pm

= —. 14
oo 14 a2py (14)
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Fig. 4. a) Dimensionless circular rotation velocity for a composite disk
with main disk parameters R = 10 and M, = 50 for two models of circumnuclear disks
with « = 0.5 (dashed line)and « = 2.0 (solid line).
b) Circular velocity with a normal circumnuclear disk (o« = 1) and different main disk masses
at Ry = 10R;: M, = 100 (solid line), M, = 50 (dashed line), My = 25 (dotted line).
¢) Dependences of the circular velocity of rotation for the composite stellar disk with normal
circumnuclear disk (o« = 1) and different spatial scales of the main disk at My = 50M;:
R, =5 (solid line), Ry = 10 (dashed line), R, = 15 (dotted line)

Observational data for spiral galaxies show that the characteristic radial scale of the
main stellar disk Ry is several times greater than the radius of the circumnuclear disk Rj,
and the mass M, is approximately two orders of magnitude greater than the mass of the
circumnuclear disk M;. Let us consider the influence of the parameters o, Ry/R1 = pr > 1
and My/M; = pyr > 1 on the total rotation curve in the gravitational field of composite
disk (7), (13). The main disk model with parameters Ry = 10 and My = 50 is the base one
in our calculations.

Figure 4 shows the circular velocities in composite disk models. As you can see, there
is a two-humped rotation curve due to the presence of a circumnuclear stellar disk. The
influence of the parameter « is not critical and changes the shape of the rotation curve only
inside the circumnuclear disk and not far beyond it (see figure 2).

Figure 4,b shows the effect of the mass ratio of the main and circumnuclear disks,
pvu = Ms/M; on the composite disk rotation curve. An increase in the mass of the
main disk leads to a corresponding increase in the outer hump on the rotation curve and has
virtually no effect on the size and shape of the inner hump, which is due to the circumnuclear
disk.

The ratio effect of the characteristic spatial scales of the circumnuclear and main
disks on the compound disk rotation curve is shown in figure 4,c. The decrease in the
characteristic spatial scale of the main disk leads to two features.
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1) The depth of the dip between the humps of the rotation curve decreases.
2) The maximum velocity at the radius of the outer hump increases.

The equilibrium gas models are determined by the radial dependences of the surface
density of the gas (09 (r)) and stars (c'®)(r)), the rotation velocity V,(r), the sound speed
cs(r) (or pressure, see (1)). The three-dimensional approach requires considering the volume
density o(r, z) instead of the surface density o(r). The dynamics of linear perturbations are
determined by the dispersion dependences between the irequency and spatial scales of the
waves. The presence of positive increments in the eigenvalue frequency w indicates an
exponential growth of unstable perturbations, w®™) > 0. Some estimates of increments in
simple limiting models due to sharp changes in the rotation velocity will be written below.

The Kelvin—Helmholtz instability is a classic example of hydrodynamic instability. The
presence of a velocity jump at radius R in the subsonic limit gives the expression for the
imaginary part of the frequency, that is

(1m)

W™ =i ((m? — 1)1 - a) " (15)

where €y is the angular velocity of the inner part of the disk (r < R), g = Q5/84, Qs is the
angular velocity of the outer part of the disk (r > R), m is the azimuthal number of spiral
arms. The flow is unstable for any sign of 1 — ¢, both for €2y > )5, and otherwise.

Centrifugal instability requires a faster rotation of the central zone of the disk (25 <
< €)y), which gives the increment in the supersonic limit [26]:

w ™) :i%M* (1-¢%) , (16)

where M, = RS);/c; is the characteristic Mach number. Instability is possible only at ¢ < 1,
which agrees with the rotation curves in figures 2 and 4.

The instability of the acoustic resonance type (IART) is also called the overreflection
effect. The general term “Kelvin—Helmholtz instability” (KHI) is used in the English lit-
erature to refer to all instabilities associated with a sharp drop in velocity, including the
velocity gap between plasma and magnetic field [13]. The use of the term KHI for IART
(see, e.g., [40]) in the English literature is incorrect, since the physical mechanisms of
these instabilities are different.

One solution for the imaginary part of the IART frequency is the following asymptotics:

w( ):ZQW m2 —4 (17)

at M, > m > 1. The formulas (15)-(17) are obtained for the speed jump when the width
of the transition layer Ly from € to {25 is infinitesimal (L, = 0). The value of Ly in
real systems is finite, which requires additional analysis. A distinctive feature of the above
instabilities is their strong dependence on Ly, so that there is always some critical width
L) stabilizing the instability.
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Fig. 5. a) Examples of galaxy rotation curves ([r] = kpc, [V]| = km/sec). b) Radial profiles
of parameter n computed for rotation curves on panel a. The line colors on the panels a and b
correspond to each other

4. Estimates of the inhomogeneity index of the observed rotation curves

Figure 5,a shows the radial dependences of the rotation curves of some galaxies in
[23; 39], which have zones of a sharp decrease in rotation. The result of calculating the pa-
rameter n(r) for these objects is shown in figure 5,b. Of main interest are the regions n < 0
and especially n < —1/2 in the central parts of the disks. Four galaxies have strong rotation
velocity gradients with n < —1. Rotation curves with similar features are also observed in
the galaxies NGC 157, NGC 615, NGC 253, NGC 2273, NGC 2590, NGC 2599, NGC 2713,
NGC 2841, NGC 3031, NGC 3034, NGC 3079, NGC 3531, NGC 3898, NGC 4192,
NGC 4303, NGC 4527, NGC 4536, NGC 4548, NGC 4945, NGC 5033, NGC 5236,
NGC 6946, UGC 508, UGC 3546, UGC 6787, UGC 08179, UGC 8699 [1;4; 5; 30; 34; 35; 38].

We do not consider the Milky Way here, since the rapid decrease in the rotation velocity
in the region of 1-2 kpc is caused by dynamical causes in the region of the central stellar bar
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[18] and does not characterize the circular velocity. This problem of strong non-axisymmetry
of gas motion in the zone controlled by a powerful stellar bar may concern the galaxies NGC
4535, NGC 1097, NGC 1672, NGC 1300, since the azimuthal component of the gas velocity
along the major and minor axes of the bar is very different. The galaxies NGC 628 and
NGC 4941 do not have a pronounced bar, and their rotation curves reflect the radial mass
distribution to a greater extent, allowing one to assume V, = V..

VA p vV 4 b
180 — 180 - o
) | V.
160—_ 160—_ ! Halo
140 — 140 —| 4 _ - -
. 4l P
120 — 120~ % - )
| AVp - Disk
‘
100 100 — /
\ AVp 4 ‘\ /
80 80 — AN
- - /\\
60 — 60 —| / ..
4 - )i T BRI Bulge
40 - i A e i
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Fig. 6. a) Modeling of the central part of the rotation curve of NGC 4941 with different bulge
models: King model (line ), de Vaucouleur model (line 2), Sersic model (line 3).
b) Complete decomposition of the rotation curve in the three-component model. The circles show
the observed rotation law (see figure 5, a)

Figure 6 shows the result of the decomposition of the central part of the rotation curve
for NGC 4941. No traditional bulge models reproduce the observed decrease in the rotation
velocity in the zone near 0.5-1.5 kpc in figure 6, a, where only the bulge contribution is
considered. Moreover, we use the bulge model with a sharp density cutoff near the velocity
maximum, which is in poor agreement with the photometric data. The formal discrepancy
between the observed and model velocity V, at the local minimum is AV, = 17 km/sec.
Attempts to construct a realistic decomposition in the model with a disk and a halo in
figure 6, b immediately increase the discrepancy to AV, ~ (145 — 85) km/sec = 60 km/sec.
Thus, the rotation curve of this galaxy cannot be explained using the standard models of
the bulge, thick exponential disk, and dark halo. This possibly indicates the influence of the
circumnuclear disk. The decomposition of NGC 628 gives a similar result.

5. Discussion of the results
Our calculations have shown that a circumnuclear stellar disk with a mass two orders

of magnitude smaller than the mass of the main stellar disk of the S-galaxy is capable of
creating a pronounced two-peaked gas rotation curve. Examples of such rotation curves for
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a number of galaxies are shown in figure 5,a. The gradient of the rotation curve in the
vicinity of the radius of the circumnuclear stellar disk can be so large that it allows both
the Kelvin—Helmholtz instability and the centrifugal instability to develop in the gaseous
disk. The uniqueness of these instabilities is due to the fact that their properties have been
confirmed in analog experiments based on the theory of shallow water [6-9].

Thus, we believe that the role of circumnuclear stellar disks in galaxies is to create
double-humped rotation curves of gas components with a sharp decrease in the gas rotation
velocity, allowing hydrodynamic instabilities capable of generating a spiral pattern in the
galaxy. The reverse effect of perturbations from the nonlinear hydrodynamic instability on
the circumnuclear stellar disk can deform it, forming oval structures like weak bars.

The models constructed in this paper are designed to study spiral patterns due to hy-
drodynamic instabilities in galactic disks as equilibrium initial states in numerical models.
Such computational experiments impose special requirements on numerical models since
they are required to describe the creation of unstable modes in a very narrow spatial region,
the dimensions of which are several orders of magnitude smaller than the entire computa-
tional domain. One of the advantages of centrifugal instability as a generator of the spiral
structure is the natural explanation of the number of arms in the disk [7]. The purpose of
such computational experiments is to test the hypothesis of a hydrodynamic mechanism for
the generation of spiral patterns in gas-rich galaxies. Spiral patterns due to hydrodynamic
instability should differ in their properties from the mechanisms of gravitational instability
or tidal influence. Including “hydrodynamic type” spiral models in a combined machine
learning dataset can reveal the role of one mechanism or another in real systems.

NOTE

! This work is supported by the Russian Science Foundation (grant no. 23-71-00016,
https://rsci.ru/project/23-71-00016/).
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AnHotaumsa. Ilpencras/ieHbl pe3ysnbTaTbl IOCTPOEHHS MOAeJeH ranakThye-
CKHUX AMCKOB C TaK Ha3blBaeMbIMH JBYTOpOBIMM KPHBBIMM BpallleHHs ras3a, Koraa
MMeITCS 30HBl Pe3KOT0 U3MeHEeHHUs] KpyroBoi cKopocTH. Takue Mopesnu IOMyCKaKT
pasBUTHE CIBUIOBBIX THAPOAMHAMUUECKHUX HEYCTOMYUBOCTEH, B YACTHOCTH, LIeH-
TPOOEXKHOH HeyCTOHUMBOCTH M HeyCTOHUMBOCTH THNA aKyCTHUECKOrO0 pPe30HAaHCa.
B nocTpoeHHbIX MoAesiX BHYTPEHHUH MUK CKOPOCTH BpallleHHs CBSI3aH C HaJlHYH-
eM OKOJIOSIIEpHOr0 3Be3qHOro Aucka. M3ydyeHo B/MsIHMe napaMeTpoB MOAeNH Kak
BHYTPEHHEr0, TaK U OCHOBHOT'O 9KCIIOHEHLHAJbHOIO 3BE3[JHOrO JIHUCKA Ha pajHalib-
Hble TIPO(PUAN KPYTOBOH CKOpPOCTH. PasBUT yucaeHHBIH MeTOH, 00ecreunBaroLUIUi
NOCTpPOeHHe ABYropObIX KPUBBIX BpallleHHs C TPOU3BOJIBHBIMU pacrpeieeHUsIMU
MIOBEPXHOCTHOH TJIOTHOCTH 3Be3fiHOro ancka. CgopmupoBaHa BbIOOPKA TajJaKTHK
C KPHBBIMU BpallleHHs], COlepKallMMU 00/acTH Pe3KUX OTpULlaTe bHbIX TpajueH-
ToB. Mozesin 3TUX 0OBEeKTOB MpefHa3HaueHbl A5 NPOBeJeHUs] BBIYUCJUTENbHbIX
9KCMEPUMEHTOB, HANPaBJEHHbIX Ha U3yueHHe 00pa30BaHUs CIUPANbHBIX CTPYKTYp
BCJIeCTBHE Pa3BUTHSl THAPOAMHAMHYECKOH HeycTOHuMBOCTH. Mbl BeiOpasin 00b-
€KTbl, KPUBble BpALleHUs KOTOPHIX B LEHTPAJbHOH 00/MACTH He MOTyT OBITH CMO-
Je/JUPOBAaHbl C(PEpOUNANbHBIMU TFaJaKTHYeCKUMH OaJsl’)KaMM, YTO YKas3blBaeT Ha
Ha/IM4He 0COOBIX KOMIIOHEHT B COCTaBHBIX MOJEJ/AX 3BE3JHOrO AMCKA, IOXOXKHX Ha
OKOJIOSIZIePHbIE JHCKH.

Karouessbie cioBa: rajJlakTUKH, KpUBbI€ BpallleHUs, THAPOAMHaAMUYECKHEe HGYCTOfI-
YHUBOCTH, AEKOMIIO3HMIHSA, KPyroBass CKOPOCTb.
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