

DOI: https://doi.org/10.15688/mpcm.jvolsu.2024.1.6

Дата поступления статьи: 15.01.2023 Дата принятия статьи: 01.02.2024

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ УДАРНЫХ ВОЛН В НЕРАВНОВЕСНОМ ХИМИЧЕСКИ АКТИВНОМ ГАЗЕ ¹

Сергей Сергеевич Храпов

Кандидат физико-математических наук, доцент кафедры информационных систем и компьютерного моделирования, Волгоградский государственный университет khrapov@volsu.ru https://orcid.org/0000-0003-2660-2491 просп. Университетский, 100, 400062 г. Волгоград, Российская Федерация

Аннотация. Рассмотрена нелинейная динамика неустойчивых звуковых волн в неравновесном колебательно-возбужденном газе с учетом вязкости, теплопроводности, химических реакций и произвольных зависимостей времени релаксации, функций нагрева и охлаждения от плотности и температуры. Построена численная модель и разработан программный комплекс, основанный на газодинамических методах сквозного счета CSPH-TVD/MUSCL, для исследования линейной и нелинейной стадии развития акустической неустойчивости в неравновесном химически активном газе с различными моделями времени релаксации, нагрева и охлаждения. Численная модель обладает высоким пространственным разрешением и имеет второй порядок точности. Исследовано влияние химической активности в неравновесном колебательновозбужденном газе на нелинейную динамику акустической неустойчивости. Показано, что учет химических реакций в неравновесном газе приводит к усилению акустической неустойчивости и в результате на конечной нелинейной стадии формируются ударно-волновые импульсы более высокой интенсивности и с большим пространственным масштабом. Исследована структура и устойчивость ударных волн (УВ) различной интенсивности. Показано, что ударные волны в неравновесном колебательно-возбужденном газе оказываются неустойчивыми, то есть за фронтом УВ происходит генерация неустойчивых возмущений, амплитуда которых с течением времени нарастает, достигая нелинейного насыщения.

Ключевые слова: неравновесный газ, колебательная релаксация, химические реакции, ударные волны, численный метод CSPH-TVD, нелинейное акустическое уравнение.

Введение

Структура слабых ударных волн в неравновесном колебательно-возбужденном газе рассматривалась в работах [2; 7; 9; 10] на основе акустического уравнения с квадратичной нелинейностью. Подход, основанный на решении нелинейного акустического уравнения, используется и при исследовании нелинейных волновых структур в различных неравновесных средах, например, с неравновесным тепловыделением [3; 11].

В общем динамика нелинейных волн со значительной амплитудой требует учета не только квадратичной нелинейности, но и нелинейных поправок более высокого порядка. Полный учет всех нелинейных эффектов возможен только при прямом численном решении газодинамических уравнений. Ранее детальное исследование динамики акустической неустойчивости и ударных волн в неравновесном химически активном газе не проводилось.

1. Постановка задачи и численная модель динамики неравновесного химически активного газа

Рассмотрим задачу сверхзвукового натекания газа на препятствие (твердую стенку). Воспользуемся математической моделью динамики неравновесного колебательновозбужденного газа с учетом химических реакций, вязкости, теплопроводности, нагрева и охлаждения, которая подробно описана в работе [4].

1.1. Численная модель

Проведем обобщение численной модели динамики неравновесного колебательновозбужденного газа [5;6] на случай химической активности газа. В обобщенной модели добавляется новое уравнение динамики химически активного реагента [4], а в уравнении баланса энергии удельная мощность нагрева дополняется новым слагаемым (см. [4]), которое учитывает нагрев газа за счет химических реакций.

Для решения уравнений обобщенной численной модели воспользуемся хорошо апробированными газодинамическими методами сквозного счета CSPH-TVD/MUSCL, которые адаптированы для моделирования динамики химически активных сред и позволяют исследовать как нелинейную динамику акустической неустойчивости, так и структуру ударных волн.

1.2. Нелинейное акустическое уравнение

Наряду с обобщенной численной моделью полной системы уравнений газодинамики неравновесного химически активного газа (см. п. 1.1) рассмотрим приближение, в котором учитываются только квадратичные поправки по возмущенным величинам. Этот подход используется при выводе нелинейного акустического уравнения, широко применяемого для исследования структуры ударных волн в различных неравновесных средах [2; 3; 7; 9–11]. Для того чтобы получить аналог нелинейного акустического уравнения в рамках нашей обобщенной численной модели, необходимо в выражениях для потоков импульса и энергии исключить кубические поправки относительно возмущен-

ных величин $\widetilde{f} = f - f_0$ (f_0 — начальные стационарные значения параметров течения):

$$F_{u} = \varrho u^{2} + p - \mu_{0} \varrho \frac{\partial u}{\partial x} - \widetilde{\varrho} \widetilde{u}^{2},$$

$$F_{E} = (E + p)u - \mu_{0} \varrho u \frac{\partial u}{\partial x} - \kappa_{0} \frac{\partial T}{\partial x} + \mu_{0} \widetilde{\varrho} \widetilde{u} \frac{\partial \widetilde{u}}{\partial x},$$

$$(1)$$

где F_u и F_E — потоки импульса и энергии для модели с квадратичной нелинейностью соответственно. Также необходимо заменить функции общего вида $f(\varrho,T)$ для времени колебательной релаксации τ , скорости химической реакции K, мощности нагрева Q и охлаждения Λ следующей квадратичной аппроксимацией:

$$f(\varrho,T) \approx \frac{\widetilde{\varrho}}{\varrho_0} \left(\frac{\partial \ln f}{\partial \ln \varrho} \right)_0 + \frac{\widetilde{\varrho}^2}{\varrho_0^2} \left(\frac{\partial^2 \ln f}{\partial \ln \varrho^2} \right)_0 + \frac{\widetilde{T}}{T_0} \left(\frac{\partial \ln f}{\partial \ln T} \right)_0 + \frac{\widetilde{T}^2}{T_0^2} \left(\frac{\partial^2 \ln f}{\partial \ln T^2} \right)_0$$

$$= \frac{\widetilde{\varrho}}{\varrho_0} f_{\varrho} + \frac{\widetilde{\varrho}^2}{\varrho_0^2} f_{\varrho\varrho} + \frac{\widetilde{T}}{T_0} f_T + \frac{\widetilde{T}^2}{T_0^2} f_{TT}.$$
(2)

Предложенный подход (1)-(2) обладает рядом преимуществ по сравнению с аналитическим представлением нелинейного акустического уравнения и прямыми численными методами его решения. Во-первых, это универсальность, позволяющая рассматривать различные неравновесные среды, а во-вторых, это использование хорошо апробированных численных газодинамических методов, которые обладают свойствами консервативности, устойчивости и отсутствием паразитных осцилляций в численных решениях за счет использования TVD-ограничителей [5; 6].

2. Результаты численного моделирования

Будем рассматривать три режима натекания неравновесного химически активного газа: дозвуковой с числом Маха M<1, околозвуковой M=1 и сверхзвуковой M>1. Далее будем использовать безразмерные параметры, определенные в [5;6]. Базовые фиксированные значения безразмерных параметров численной модели зададим в виде [4-6]: $\gamma=1,4,~C_v=0,0888,~S_0=0,5,~\bar{\tau}_0^{(a)}=1,~\bar{\mu}_0=\bar{\chi}_0=10^{-4},~\tau_\varrho=-1,~\tau_T=-4,3333,~Q_\varrho^{(a,s)}=0,~Q_T^{(s)}=0,~Q_T^{(a)}=10,~Q_Y^{(a)}=1,~\Lambda_\varrho=0,~\Lambda_T=1,4286.$ Варьируемые параметры численной модели: число Маха $M=\{0,5;1;2\}$; доля химического энерговыделения в общей мощности нагрева $\beta=\{0;0,5\}.$ Расчетную область $\bar{x}\in[0,\bar{L}]~(\bar{L}=500)$ покроем сеткой с размером ячеек $\bar{h}=\bar{L}/N$, где количество ячеек $N=5\times10^4.$ Выбранное пространственное разрешение $(\bar{h}=0,01)$ позволяет детально исследовать структуру ударных волн (УВ) и мелкомасштабных неустойчивых возмущений, генерируемых фронтом УВ. Даже для самых мелкомасштабных неустойчивых гармоник, возникающих в численных экспериментах, количество ячеек, приходящихся на длину волну, оказывается больше 50. Твердая стенка расположена в точке $\bar{x}=0,$ а газ натекает на нее справа со скоростью $\bar{u}_0=-M.$

2.1. Нелинейная динамика акустической неустойчивости в неравновесном химически активном газе

В обычной равновесной и диссипативной среде при дозвуковом натекании газа на препятствие нелинейные волновые структуры с ударными волнами не образуются, а

образуется только некоторое гладкое возмущение в виде звуковой волны, которое затухает при удалении от твердой стенки. В неравновесном колебательно-возбужденном газе, параметры которого допускают развитие акустической неустойчивости [1; 4; 8], ситуация кардинально меняется. Начальное звуковое возмущение быстро эволюционирует в ударную волну, за счет развития акустической неустойчивости, что отражено на рисунке 1 при $\bar{t}=20$. Далее фронт этой ударной волны начинает генерировать возмущения конечной амплитуды, которые, также за счет развития акустической неустойчивости, эволюционируют в систему ударно-волновых импульсов (УВИ) [5; 6] (рис. 1 при $\bar{t}=500$ и $\bar{t}=390$).

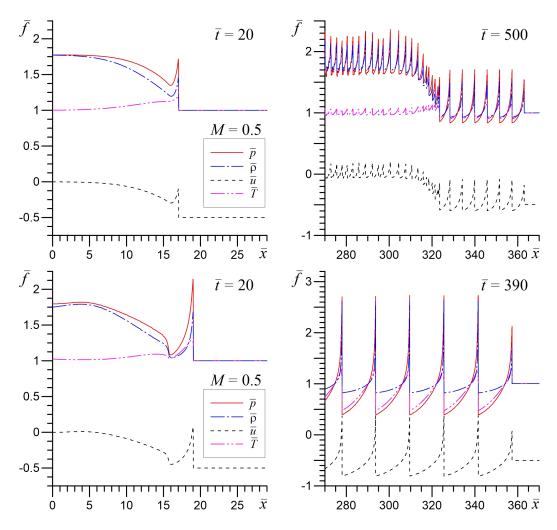


Рис. 1. Структура ударных волн при начальной скорости натекания газа M=0,5 в различные моменты времени. Верхний ряд соответствует модели без учета химических реакций ($\beta=0$), а нижний ряд — при $\beta=0,5$

На рисунке 1 показана динамика образования УВИ как для модели без учета химической активности газа ($\beta=0$), так и для модели с учетом химических реакций ($\beta=0,5$). Видно, что в неравновесном химически активном газе происходит существенное усиление акустической неустойчивости и на конечной нелинейной стадии ее эволюции формируются ударно-волновые импульсы с интенсивностью в 2-2,5 раза больше,

чем без учета химических реакций. При этом пространственный масштаб (расстояние между фронтами) УВИ также увеличивается в 2–2,5 раза. Скорость распространения УВИ (скорость первого фронта волнового пакета) относительно невозмущенного газа составляет $\bar{u}_{sh} \simeq 1,22$ для модели с $\beta=0$ и $\bar{u}_{sh} \simeq 1,44$ при $\beta=0,5$, то есть натекание газа на фронт УВИ происходит со сверхзвуковой скоростью. Увеличение интенсивности и пространственного масштаба УВИ в неравновесном химически активном газе обусловлено усилением акустической неустойчивости при учете химических реакций. Наибольший эффект увеличения акустического инкремента происходит на частотах $\bar{\omega} \sim 1$ [4], чем и обусловлено увеличение пространственного масштаба УВИ.

2.2. Структура и устойчивость ударных волн в неравновесном химически активном газе

В обычной равновесной и диссипативной среде при околозвуковом и сверхзвуковом натекании газа на препятствие происходит образование ударных волн, которые распространяются от твердой стенки с практически неизменной формой, а за фронтом УВ устанавливается стационарное течение. При околозвуковых режимах натекания образуются слабые ударные волны $M \sim 1,01$ –1,05. Для околозвуковых и сверхзвуковых режимов натекания в неравновесном колебательно-возбужденном газе, параметры которого допускают развитие акустической неустойчивости [1; 4; 8], ситуация также кардинально меняется. На фронте ударной волны, образовавшейся за счет газодинамических процессов, формируется характерный пик, обусловленный развитием акустической неустойчивости (рис. 2 при $\bar{t}=30$). Далее фронт ударной волны с этим пиком начинает генерировать звуковые волны, которые также за счет развития акустической неустойчивости эволюционируют в систему УВИ [5; 6], которая формируется за фронтом головной ударной волны (см. рис. 2 при $\bar{t}=223$).

На рисунке 2 показана динамика и структура ударных волн для случая околозвукового натекания газа M=1 в моделях без учета химической активности газа ($\beta=0$) и с учетом химических реакций ($\beta=0,5$). Видно, что в неравновесном химически активном газе происходит существенное усиление акустической неустойчивости за фронтом головной ударной волны, что на конечной нелинейной стадии ее эволюции приводит к образованию более интенсивной системы УВИ с амплитудой в 2-5 раз больше, чем без учета химических реакций. Пространственный масштаб УВИ также увеличивается в 2-5 раз. Скорость распространения головной ударной волны относительно невозмущенного газа незначительно возрастает при учете химической активности среды. Так, при $\beta=0$ она составляет $\bar{u}_{sh}\simeq 1,48$, а при $\beta=0,5$ имеем $\bar{u}_{sh}\simeq 1,5$. Также как и для случая дозвукового натекания увеличение интенсивности и пространственного масштаба УВИ за фронтом головной ударной волны связано с более высоким значением акустического инкремента в неравновесном химически активном газе на частотах $\bar{\omega}\sim 1$ [4].

На рисунке 3 показана динамика и структура ударных волн для случая сверхзвукового натекания газа M=2 в моделях без учета химической активности газа ($\beta=0$) и с учетом химических реакций ($\beta=0,5$). Видно, что при сверхзвуковом режиме натекания образуется ударная волна с большей амплитудой, характерный пик на фронте УВ, обусловленный акустической неустойчивостью, становится существенно меньше как по интенсивности, так и по пространственному масштабу (рис. 3 при $\bar{t}=50$). В этом численном эксперименте скорость распространения головной ударной волны относительно невозмущенного газа составляет $\bar{u}_{sh}\simeq 2,31$.

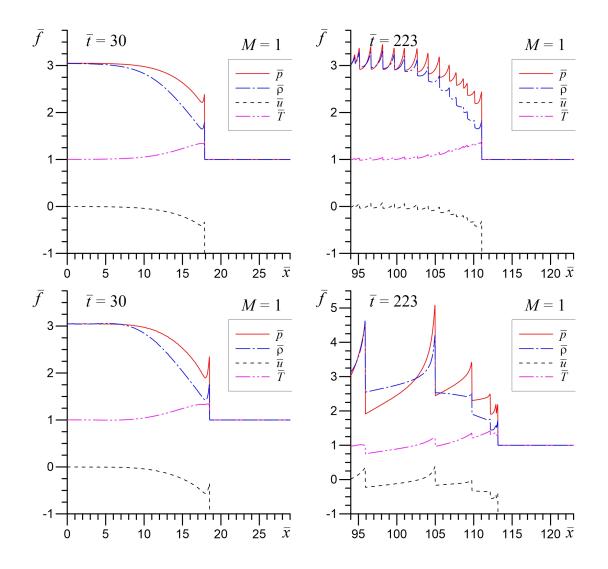


Рис. 2. Структура ударных волн при начальной скорости натекания газа M=1 в различные моменты времени. Верхний ряд соответствует модели без учета химических реакций ($\beta=0$), а нижний ряд — при $\beta=0,5$

Последующая эволюция структуры ударных волн сильно зависит от параметра β . Так, при $\beta=0$ к моменту времени $\bar{t}=350$ за фронтом головной ударной волны образуется мелкомасштабная волновая структура с относительной амплитудой возмущений ~ 10 %, то есть происходит существенное уменьшение акустического инкремента. В модели с учетом химической активности газа $\beta=0,5$ при M=2 стабилизация (уменьшение инкремента) неустойчивости не происходит и также за фронтом головной УВ формируется система интенсивных УВИ с большим пространственным масштабом. Дальнейшее увеличение числа Маха в натекающем газе приводит к полной стабилизации неустойчивости акустического типа за фронтом головной УВ при $M>M_{crit}$. Для модели с $\beta=0$ критическое число Маха составляет $M_{crit}\approx 3$, а для модели с $\beta=0,5$ имеем $M_{crit}\approx 7$. Величина M_{crit} возрастает с увеличением начальной степени неравновесности S_0 .

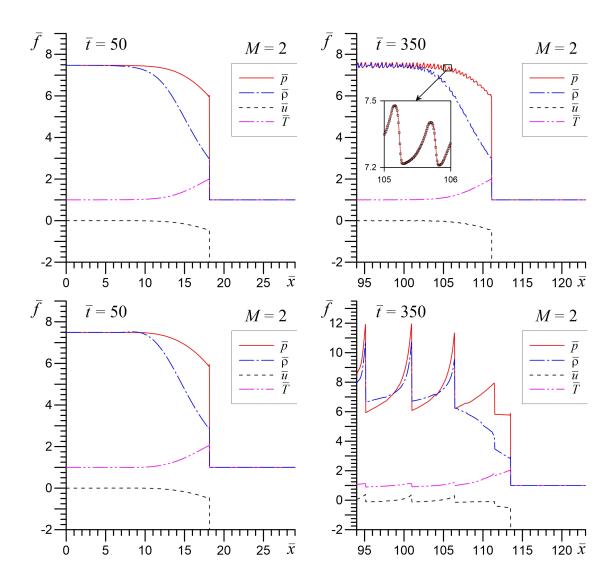


Рис. 3. Структура ударных волн при начальной скорости натекания газа M=2 в различные моменты времени. Верхний ряд соответствует модели без учета химических реакций ($\beta=0$), а нижний ряд — при $\beta=0,5$. На врезке показана структура мелкомасштабных неустойчивых гармоник, генерируемых фронтом УВ, узлы расчетной сетки отмечены точками

Заключение

Сформулируем основные результаты работы:

- 1) Построена обобщенная численная модель динамики неравновесного колебательновозбужденного газа с учетом вязкости, теплопроводности и химических реакций. В обобщенной модели добавилось новое уравнение динамики химически активного реагента, а в уравнении баланса энергии удельная мощность нагрева дополнена новым слагаемым, учитывающим нагрев газа за счет химических реакций.
- 2) Разработан программный комплекс для моделирования динамики неравновесных химически активных сред, который основан на газодинамических методах сквоз-

- ного счета CSPH-TVD/MUSCL и предназначен как для исследования нелинейной динамики акустической неустойчивости, так и для изучения структуры и устойчивости ударных волн в неравновесных химически активных средах.
- 3) Исследовано влияние химической активности в неравновесном колебательно-возбужденном газе на нелинейную динамику акустической неустойчивости. Показано, что учет химических реакций в неравновесном газе приводит к усилению акустической неустойчивости и в результате на конечной нелинейной стадии формируются ударно-волновые импульсы (УВИ) более высокой интенсивности и с большим пространственным масштабом. Увеличение интенсивности и пространственного масштаба УВИ связано с более высокими значениями акустического инкремента на частотах $\omega \tau \sim 1$ по сравнению с моделями без учета химических реакций.
- 4) Проведено численное моделирование ударных волн в неравновесном колебательновозбужденном газе с учетом химических реакций, вязкости, теплопроводности, нагрева и охлаждения. Исследована структура и устойчивость ударных волн (УВ) различной интенсивности (от слабых УВ с числом Mаха M < 1,01 до сильных УВ с M > 10). Показано, что ударные волны в неравновесном колебательновозбужденном газе оказываются неустойчивыми, то есть за фронтом УВ происходит генерация неустойчивых возмущений, амплитуда которых с течением времени нарастает, достигая нелинейного насыщения. С увеличением числа Маха амплитуда и пространственный масштаб формируемых на нелинейной стадии развития неустойчивости волновых структур за фронтом УВ уменьшаются. При больших значениях числа Mаха $M > M_{crit}$ происходит стабилизация неустойчивости и YBстановятся устойчивыми. Величина M_{crit} увеличивается с ростом степени неравновесности S_0 и при учете химических реакций. Кроме того, учет химической активности приводит к увеличению как максимальной амплитуды, так и пространственного масштаба волновых структур, образующихся за фронтом УВ на нелинейной стадии развития неустойчивости.
- 5) Разработана численная модель, которая является аналогом нелинейного акустического уравнения, описывающего динамику возмущений конечной амплитуды в химически активной неравновесной среде с учетом квадратичных поправок. Данная модель строилась на основе базовой численной модели посредством исключения в выражениях для потока импульса и энергии кубических поправок относительно возмущенных величин ($\sim \tilde{\rho} \, \tilde{u}^2$), а также замены функций общего вида $f(\rho, T)$ для времени колебательной релаксации, скорости химической реакции, мощности нагрева и охлаждения квадратичной аппроксимацией с параметрами $f_{\varrho}, f_{T}, f_{\varrho\varrho}, f_{TT}.$ Преимуществом данного подхода является универсальность и использование хорошо апробированных численных газодинамических методов, обладающих важными свойствами, такими как консервативность, устойчивость, точность и отсутствие паразитных осцилляций за счет применения TVD-ограничителей. В дальнейшем построенная модель нелинейного акустического уравнения может быть использована для оценок точности и определения границ применимости квадратичного приближения, которое широко используется для анализа волновых структур (структуры слабых УВ) в различных средах.

ПРИМЕЧАНИЕ

 1 Исследование выполнено за счет гранта Российского научного фонда (РНФ) № 23-21-00401, https://rscf.ru/project/23-21-00401/.

СПИСОК ЛИТЕРАТУРЫ

- 1. Динамика малых возмущений в неравновесном колебательно-возбужденном газе / С. С. Храпов, Г. С. Иванченко, В. П. Радченко, И. С. Маковеев // Математическая физика и компьютерное моделирование. 2023. Т. 26, № 4. С. 83–105. DOI: https://doi.org/10.15688/mpcm.jvolsu.2023.4.7
- 2. Макарян, В. Г. Структура слабых ударных волн в стационарно неравновесной среде / В. Г. Макарян, Н. Е. Молевич // Физико-химическая кинетика в газовой динамике. 2005. Т. 3. Article ID: http://chemphys.edu.ru/issues/2005-3/articles/84.
- 3. Молевич, Н. Е. Автоволновой импульс в среде с дисбалансом между тепловыделением и теплоотводом при произвольной величине тепловой дисперсии / Н. Е. Молевич, Д. С. Рящиков // Письма в Журнал технической физики. 2020. Т. 46, № 7. С. 637–640.
- 4. Храпов, С. С. Газодинамические неустойчивости в неравновесной химически активной среде / С. С. Храпов // Математическая физика и компьютерное моделирование. 2024.-T.27, № 1.-C.26-44.-DOI: https://doi.org/10.15688/mpcm.jvolsu.2024.1.3
- 5. Храпов, С. С. Нелинейная динамика акустической неустойчивости в колебательно-возбужденном газе: влияние нагрева и охлаждения / С. С. Храпов // Физико-химическая кинетика в газовой динамике. 2023. Т. 24, $N \ge 6$. Article ID: http://chemphys.edu.ru/issues/2023-24-6/articles/1059. DOI: http://doi.org/10.33257/PhChGD.24.6.1059
- 6. Численное моделирование акустической неустойчивости в неравновесном колебательно-возбужденном газе / С. С. Храпов, Г. С. Иванченко, В. П. Радченко, А. В. Титов // Журнал технической физики. 2023. Т. 93, № 12. С. 1727–1731.
- 7. General Nonlinear Acoustical Equation of Relaxing Media and Its Stationary Solutions / N. E. Molevich, R. N. Galimov, V. G. Makaryan, D. I. Zavershinskiy // The Journal of the Acoustical Society of America. 2013. Vol. 133, № 5. Article ID: 3555.
- 8. Khrapov, S. S. Instability of Sound Waves in a Nonequilibrium Vibrational Excited Gas: Linear Dynamics / S. S. Khrapov. Preprint ResearchGate. Electronic text data. Mode of access: https://www.researchgate.net/publication/374582690. Title from screen. DOI: http://doi.org/10.13140/RG.2.2.18683.28965
- 9. Makaryan, V. G. Stationary Shock Waves in Nonequilibrium Media / V. G. Makaryan, N. E. Molevich // Plasma Sources Science and Technology. 2007. Vol. 16, N 1. P. 124–131.
- 10. Zavershinskiy, D. I. Numerical Simulations of Evolution of Weak Disturbances in Vibrationally Excited Gas / D. I. Zavershinskiy, V. G. Makaryan, N. E. Molevich // The Journal of the Acoustical Society of America. 2013. Vol. 133, iss. 5. Article ID: 3328. DOI: https://doi.org/10.1121/1.4805578
- 11. Zavershinskiy, D. I. Overstability of Acoustic Waves in Heat-Releasing Gaseous Media / D. I. Zavershinskiy, N. E. Molevich, S. etal Belov // AIP Conference Proceedings. 2020. Vol. 2304, iss. 1. Article ID: 020028. DOI: https://doi.org/10.1063/5.0034849

REFERENCES

1. Khrapov S.S., Ivanchenko G.S., Radchenko V.P., Makoveev I.S. Dinamika malykh vozmushcheniy v neravnovesnom kolebatelno-vozbuzhdennom gaze [Dynamics of Small

Perturbations in a Nonequilibrium Vibrationally Excited Gas]. *Matematicheskaya fizika i kompyuternoe modelirovanie* [Mathematical Physics and Computer Simulation], 2023, vol. 26, no. 4, pp. 83-105. DOI: https://doi.org/10.15688/mpcm.jvolsu.2023.4.7

- 2. Makaryan V.G., Molevich N.E. Struktura slabykh udarnykh voln v statsionarno neravnovesnoy srede [Weak Shock Waves in Negative-Dispersion Nonequilibrium Media]. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 2005, vol. 3, article ID: http://chemphys.edu.ru/issues/2005-3/articles/84.
- 3. Molevich N.E., Ryashchikov D.S. Avtovolnovoy impuls v srede s disbalansom mezhdu teplovydeleniem i teplootvodom pri proizvolnoy velichine teplovoy dispersii [Autowave Pulse in a Medium with the Heating/Cooling Misbalance and an Arbitrary Thermal Dispersion]. *Pisma v Zhurnal tekhnicheskoy fiziki* [Technical Physics Letters], 2020, vol. 46, no. 7, pp. 637-640.
- 4. Khrapov S.S. Gazodinamicheskie neustoychivosti v neravnovesnoy khimicheski aktivnoy srede [Gas-Dynamic Instabilities in a Nonequilibrium Chemically Active Medium]. *Matematicheskaya fizika i kompyuternoe modelirovanie* [Mathematical Physics and Computer Simulation], 2024, vol. 27, no. 1, pp. 26-44. DOI: https://doi.org/10.15688/mpcm.jvolsu.2024.1.3
- 5. Khrapov S.S. Nelineynaya dinamika akusticheskoy neustoychivosti kolebatelno-vozbuzhdennom vliyanie nagreva okhlazhdeniya gaze: i Dynamics of Acoustic Instability in a Vibrationally Excited Gas: Influence of Heating and Cooling]. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 2023, vol. 24, no. 6, article ID: http://chemphys.edu.ru/issues/2023-24-6/articles/1059. DOI: http://doi.org/10.33257/PhChGD.24.6.1059
- 6. Khrapov S.S., Ivanchenko G.S., Radchenko V.P., Titov A.V. Chislennoe modelirovanie akusticheskoy neustoychivosti v neravnovesnom kolebatelno-vozbuzhdennom gaze [Numerical Simulation of Acoustic Instability in a Nonequilibrium Vibrationally Excited Gas]. *Zhurnal tekhnicheskoy fiziki* [Technical Physics], 2023, vol. 93, no. 12, pp. 1727-1731.
- 7. Molevich N.E., Galimov R.N., Makaryan V.G., Zavershinskiy D.I. General Nonlinear Acoustical Equation of Relaxing Media and Its Stationary Solutions. *The Journal of the Acoustical Society of America*, 2013, vol. 133, no. 5, article ID: 3555.
- S.S. 8. Khrapov Instability of Sound Waves Nonequilibrium Vibrational Excited Gas: Linear Dynamics. Preprint ResearchGate. URL: https://www.researchgate.net/publication/374582690. DOI: http://doi.org/10.13140/-RG.2.2.18683.28965
- 9. Makaryan V.G., Molevich N.E. Stationary Shock Waves in Nonequilibrium Media. *Plasma Sources Science and Technology*, 2007, vol. 16, no. 1, pp. 124-131.
- 10. Zavershinskiy D.I., Makaryan V.G., Molevich N.E. Numerical Simulations of Evolution of Weak Disturbances in Vibrationally Excited Gas. *The Journal of the Acoustical Society of America*, 2013, vol. 133, iss. 5, article ID: 3328. DOI: https://doi.org/10.1121/1.4805578
- 11. Zavershinskiy D.I., Molevich N.E., Belov S.etal Overstability of Acoustic Waves in Heat-Releasing Gaseous Media. *AIP Conference Proceedings*, 2020, vol. 2304, iss. 1, article ID: 020028. DOI: https://doi.org/10.1063/5.0034849

NUMERICAL MODELING OF SHOCK WAVES IN A NONEQUILIBRIUM REACTIVE GAS

Sergey S. Khrapov

Candidate of Sciences (Physics and Mathematics), Associate Professor, Department of Information Systems and Computer Modeling, Volgograd State University khrapov@volsu.ru https://orcid.org/0000-0003-2660-2491 Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

Abstract. The nonlinear dynamics of unstable sound waves in a nonequilibrium vibrationally excited gas is considered, taking into account viscosity, thermal conductivity, chemical reactions and arbitrary dependences of the relaxation time, heating and cooling functions on density and temperature. A numerical model has been constructed and a software package has been developed, based on the gas-dynamic methods of end-to-end calculation CSPH-TVD/MUSCL, to study the linear and nonlinear stages of the development of acoustic instability in a nonequilibrium chemically active gas with different models of relaxation, heating and cooling times. The numerical model has high spatial resolution and second order accuracy. The influence of chemical activity in a nonequilibrium vibrationally excited gas on the nonlinear dynamics of acoustic instability has been studied. It is shown that taking into account chemical reactions in a nonequilibrium gas leads to an increase in acoustic instability and, as a result, at the final nonlinear stage, shock wave pulses of higher intensity and with a larger spatial scale are formed. The structure and stability of shock waves (SW) of various intensities have been studied. It is shown that shock waves in a nonequilibrium vibrationally excited gas turn out to be unstable, i.e. SW the shock front, unstable disturbances are generated, the amplitude of which increases over time, reaching nonlinear saturation.

Key words: nonequilibrium gas, vibrational relaxation, chemical reactions, shock waves, CSPH-TVD numerical method, nonlinear acoustic equation.