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Аннотация.Восстановление динамически искаженного сигнала на малом
временном промежутке является сложной обратной задачей динамических из-
мерений. При наличии помех различной природы выходной сигнал зашумлен,
что делает задачу еще более сложной. К настоящему времени сложилась тео-
рия оптимальных динамических измерений, в рамках которой для восстанов-
ления динамически искаженных сигналов используются методы теории опти-
мального управления, уравнений соболевского типа, стохастических диффе-
ренциальных уравнений, разрабатываются численные методы. Ранее авторами
был получен ряд результатов, развивающих численные методы нахождения
входного сигнала как решения задачи оптимального управления – оптималь-
ного динамического измерения, выполнен ряд исследований по применению
цифровых фильтров для фильтрации шума выходного сигнала, разработан но-
вый алгоритм численного решения задачи оптимального динамического изме-
рения. При наличии шумов в выходном сигнале важным является не только
эффективность алгоритма восстановления сигнала с учетом инерционности
измерительного устройства, но и выбор наиболее эффективного цифрового
фильтра. В статье предложен алгоритм обеспечения выбора одного из трех
фильтров: скользящей средней, Савицкого – Голея (основанном на методе
наименьших квадратов) с последующей реализацией алгоритма нахождения
оптимального динамического измерения и МSA-метода (метода авторов, ос-
нованного на сплайн-методе с последующим усреднением). МSA-метод не яв-
ляется только цифровым фильтром, в нем комплексно реализуется фильтра-
ция шумов и алгоритм поиска оптимального динамического измерения, кроме
того, он может быть использован и при отсутствии шумов, и при иных по-
мехах. Новизна результатов заключается в систематическом и комплексном
подходе к оценке эффективности и применимости методов фильтрации шума
в рамках решения задачи восстановления динамически искаженного сигнала.
Приводятся необходимые теоретические сведения, общие схемы алгоритмов,
данные эксперимента, результаты обработки экспериментальных данных по
предлагаемым алгоритмам.

Ключевые слова: оптимальные динамические измерения, цифровая
фильтрация сигнала, алгоритм, вычислительные эксперименты, система леон-
тьевского типа.
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Введение

Методы и математические модели теории оптимальных динамических измерений
(ОДИ) разработаны для решения задачи восстановления входящего сигнала 𝑢 по из-
вестным выходному сигналу 𝑦 и математической модели измерительной динамической
системы. Теория ОДИ построена на использовании при решении задач динамических
измерений методов автоматического управления [9], оптимального управления [15] и
дескрипторных систем [1; 13]. Математической концепцией теории ОДИ является мо-
делирование второй обратной задачи динамических измерений – нахождение входного
сигнала по известным выходному сигналу (наблюдению) и математической модели из-
мерительного устройства (ИУ) – как задачи оптимального управления, то есть прямой
математической задачи. Инерционность ИУ, шумы и помехи проявляются в запазды-
вании, меньшей амплитуде и зашумленности выходного сигнала (рис.1). Поэтому при
инженерной разработке измерительных устройств восстановление быстро меняющегося
во времени входного сигнала при включении ИУ оценивается, прежде всего, по ампли-
туде для обеспечения надежности работы датчиков.

Рисунок 1. Входной и зашумленный выходной сигнал

Постановка задачи и первые аналитические результаты, ставшие математической
основой теории ОДИ, принадлежат А.Л. Шестакову и Г.А. Свиридюку [15]. Были нача-
ты численные исследования с решения задачи ОДИ в упрощенной постановке – учиты-
валась или только инерционность ИУ [8], или инерционность ИУ с резонансными поме-
хами в его цепях [14]. Математическую модель поиска ОДИ при отсутствии каких-либо
помех (т.е. с учетом только инерционности измерительной динамической системы) бу-
дем называть базовой моделью теории ОДИ. Алгоритм численного решения этой задачи
строится на синтезе алгоритмов численного решения задачи оптимального управления
для системы леонтьевского типа и сплайн-методе. Этот алгоритм будем называть ба-
зовым алгоритмом нахождения ОДИ. Входной и выходной сигналы в базовой модели
будем называть ОДИ и полезным наблюдением соответственно. Заметим, что полезные
сигналы являются детерминированными.

В последние годы исследования ведутся по разработке численных алгоритмов, поз-
воляющих решать задачу ОДИ при зашумленности выходного сигнала. На практике,
как на выходе измерительного устройства, так и во входном сигнале, присутствуют ад-
дитивные случайные шумы, их воздействие отражается в получаемом экспериментально
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выходном сигнале. Будем считать, что экспериментально полученный выходной сигнал
в фиксируемый момент времени представим суммой полезного выходного сигнала и слу-
чайного сигнала, моделирующего шум. Задачу численного поиска ОДИ при наличии
случайных шумов предлагается решать с использованием двух подходов на основе ба-
зового алгоритма нахождения ОДИ. Первый заключается в использовании цифровых
фильтров (например, [11]) для выходного сигнала и получения приближенного «полез-
ного наблюдения» с последующим применением базового алгоритма нахождения ОДИ
[16]. Сложность подбора параметров цифровых фильтров привела к разработке чис-
ленного метода авторов статьи – MSA-метода, в котором использованы теорема отсче-
тов Котельникова [3; 5], разбиение множества отсчетов на несколько непересекающихся
подмножеств, формируемых как систематическая выборка, применение численного ал-
горитма нахождения ОДИ на каждом подмножестве, усреднение результата в каждой
точке множества [2]. Это позволяет избежать потерю информации о сигнале при одно-
кратном применении теоремы Котельникова и на основе базового алгоритма получить
статистическую совокупность значений входных сигналов, включающих приближенное
ОДИ и случайную величину шума для каждого момента времени. Последующая ста-
тистическая обработка позволяет получить оценку входного сигнала в каждый момент
времени, а затем и выделить искомое ОДИ.

При применении к зашумленным сигналам различных цифровых фильтров сложи-
лась практика сравнительного анализа их эффективности с учетом особенностей решае-
мых задач [4; 6]. Целью данной статьи стала разработка алгоритмического обеспечения
выбора метода цифровой фильтрации при обработке результатов динамических измере-
ний. Приводятся результаты апробации разработанного алгоритма на данных реально-
го эксперимента. Сравнительный анализ получаемых результатов с тестовым входным
сигналом позволяет сопоставить эффективность используемых методов и подходов по
оценке динамической погрешности.

1. Математическое моделирование оптимальных динамических измерений

Математическая модель измерительного устройства при отсутствии помех и (или)
шумов представляет собой систему систему леонтьевского типа

{︂
𝐿𝑥̇ = 𝐴𝑥+𝐵𝑢,

𝑦 = 𝐶𝑥,
(1)

с начальным условием Шоуолтера – Сидорова

[︁
(α𝐿− 𝐴)−1𝐿

]︁𝑝+1

(𝑥(0)− 𝑥0) = 0, (2)

где 𝐿 и 𝐴 – квадратные матрицы состояний 𝑥(𝑡) и взаимовлияния скоростей состояния
𝑥̇(𝑡) ИУ, в некоторых случаях возможно, что det𝐿 = 0, 𝑦(𝑡) – вектор-функция наблю-
дения; 𝐶 – прямоугольная матрица, характеризующая взаимосвязь состояния системы
и наблюдения; 𝐵 – прямоугольная матрица, определяющая условие измерения входного
сигнала, 𝑢(𝑡) – вектор-функция измерений (рис. 2).
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Рисунок 2. Структурные элементы математической модели оптимальных динамических
измерений

Система леонтьевского типа (1), являясь конечномерным аналогом уравнений со-
болевского типа с одной стороны, и вырожденной дескрипторной системой с постоян-
ными коэффициентами с другой, позволяет наиболее полно описать измерительную ди-
намическую систему. Система леонтьевского типа допускает вырожденность матрицы 𝐿
и позволяет описывать, например, сложную итерационную динамическую измеритель-
ную систему (рис. 3). Следует отметить, что большинство измерительных устройств
моделируются невырожденной системой дифференциальных уравнений. Использование
системы леонтьевского типа в качестве модели измерительного устройства позволяет
расширить круг решаемых задач, например, при работе с измерительными приборами,
представляющими собой сложный комплекс датчиков.

Рисунок 3. Схема сложной итерационной динамической измерительной системы [13]

Для представления детерминированной модели ОДИ введем пространство состоя-
ний 𝑋 = {𝑥 ∈ 𝐿2((0, τ),R𝑛) : 𝑥̇ ∈ 𝐿2((0, τ),R𝑛)}, пространство наблюдений 𝑌 = 𝐶 [𝑋],
пространство измерений 𝑈 = {𝑢 ∈ 𝐿2((0, τ),R𝑛) : 𝑢(𝑝+1) ∈ 𝐿2((0, τ),R𝑛)}, выделим в
нем замкнутое выпуклое множество допустимых моделируемых измерений

A𝜕 =

{︃
𝑢 ∈ 𝑈 :

1∑︁
𝑞=0

∫︁ τ

0

⃦⃦⃦
𝑢(𝑞)(𝑡)

⃦⃦⃦2
𝑑𝑡 ≤ 𝑑

}︃
, (3)

28 Алгоритмическое обеспечение выбора метода цифровой фильтрации
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которое содержит априорную информацию о входном сигнале (аналог энергии сигнала
на промежутке измерения).

В моделях теории автоматического управления (ТАУ) [9] функция управления
включена как внешнее воздействие в систему (1), поэтому входной сигнал в задаче оп-
тимального управления моделируется функцией управления. Начальное состояние ИУ
𝑥0 в (2) принимается равным нулю. Функционал штрафа содержит оценку расхождения
между экспериментально полученным выходным сигналом (наблюдением) и моделируе-
мым наблюдением, как сложной функции, зависящей также от моделируемого входного
сигнала (см. рис. 2)

𝐽(𝑢) =
1∑︁

𝑞=0

∫︁ τ

0

⃦⃦⃦
𝑦(𝑞)(𝑢, 𝑡)− 𝑦

(𝑞)
0 (𝑡)

⃦⃦⃦2
𝑑𝑡, (4)

где 𝑦0(𝑡) = 𝑐𝑜𝑙 (𝑦01(𝑡), . . . , 𝑦0𝑟(𝑡)) – наблюдения, полученные в ходе эксперимента, 𝑦(𝑢, 𝑡)
– моделируемые наблюдения (т.е. полученные в ходе математического моделирования
процесса восстановления динамически искаженных сигналов), ||·|| – евклидова норма
R𝑛. Физический смысл (4) определяет задачу нахождения

𝐽 (𝑣) = min
𝑢∈A𝜕

𝐽 (𝑢) , (5)

где точка минимума 𝑣(𝑡) функционала (4) называется оптимальным динамическим из-
мерением или решением задачи ОДИ (1) – (5). Заметим, что тестовый сигнал 𝑣*(𝑡) изве-
стен только при проведении модельных экспериментов, которые проводятся для оценки
эффективности разрабатываемых численных методов и программных алгоритмов. На
практике о 𝑣(𝑡) имеются лишь косвенные сведения.

В результате поиска минимума функционала определяется искомая функция вход-
ного сигнала, обеспечивающая минимальную квадратическую ошибку динамических из-
мерений.

Справедлива следующая

Теорема 1. [15] Пусть 𝐿, 𝐴 и – квадратные матрицы порядка 𝑛, матрица 𝐴 явля-
ется (𝐿, 𝑝)-регулярной, 𝑑𝑒𝑡𝐴 ̸= 0. Тогда для любого 𝑥0 ∈ R𝑛 существует единствен-
ное решение 𝑣 ∈ A𝜕 задачи (1) – (5), при этом 𝑥 (𝑣) ∈ 𝑋 удовлетворяет системе (1),
условию (2) и определяется формулой

𝑥 (𝑡) = lim
𝑘→∞

𝑥𝑘(𝑡) = lim
𝑘→∞

[︃
𝑝∑︀

𝑞=0

(︁
𝐴−1

(︁(︀
𝑘𝐿𝐿

𝑘 (𝐴)
)︀𝑝+1 − I𝑛

)︁
𝐿
)︁
×

×𝐴−1
(︁
I𝑛 −

(︀
𝑘𝐿𝐿

𝑘 (𝐴)
)︀𝑝+1

)︁
(𝐵𝑢)(𝑞) +

(︁(︀
𝐿− 𝑡

𝑘
𝐴
)︀−1

𝐿
)︁𝑘

𝑥0+ (6)

+
𝑡

∫
0

(︁ (︀
𝐿− 𝑡−𝑠

𝑘
𝐴
)︀−1

𝐿
)︁𝑘 (︀

𝐿− 𝑡−𝑠
𝑘
𝐴
)︀−1×

(︀
𝑘𝐿𝐿

𝑘 (𝐴)
)︀𝑝+1

𝐵𝑢 (𝑠) 𝑑𝑠

]︂
,

где lim
𝑘→∞

(︀
𝑘𝐿𝐿

𝑘 (𝐴)
)︀𝑝+1 – проектор, 𝐿𝐿

𝑘 (𝐴) – левая резольвента оператора 𝐴.

Аналитические и численные исследования задачи ОДИ при наличии шумов приве-
ли к разработке двух направлений ее решения. Первое базируется на теории стохасти-
ческих уравнений соболевского типа и производной Нельсона–Гликлиха [10], в рамках
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второго разрабатываются численные методы с использованием цифровых фильтров [12].
В измерительное устройство моделируется стохастической системой леонтьевского типа

𝐿
∘
ξ= 𝐴ξ+𝐵 (𝑢+ ϕ) ,
η = 𝐶ξ+ ν,

(7)

здесь матрицы 𝐿,𝐴,𝐵,𝐶 имеют тот же смысл, что и в (1), cлучайные процессы ϕ и
ν определяют шумы в цепях и на выходе ИУ, соответственно, 𝑢 : I −→ R𝑛 – вектор-
функция полезного входного сигнала, ϕ – стохастический процесс, моделирующий шум,

причем частоты полезного сигнала отличны от частот шума,
∘
ξ – производная Нельсона

– Гликлиха. Пусть матрица 𝐴 – (𝐿, 𝑝)-регулярна, 𝑝 ∈ {0} ∪ N, и начальные состояния
ИУ описываются начальным условием Шоултера – Сидорова:[︁

(α𝐿− 𝐴)−1𝐿
]︁𝑝+1

(ξ (0)− ξ0) = 0, (8)

где ξ0 =
∑︀𝑛

𝑘=0 ξ0,𝑘𝑒𝑘, ξ0,𝑘 – попарно независимые гауссовские случайные величины, а
{𝑒𝑘}𝑛𝑘=1 является ортонормированным базисом в R𝑛.

Для постановки и решения стохастической задачи ОДИ используем следующие
обозначения и определения. Случайной величиной будем называть измеримое отобра-
жение ξ : Ω → R, где Ω ≡ (Ω,𝒜,P) – полное вероятностное пространство. Случайные
величины с нулевым математическим ожиданием и конечной дисперсией образуют гиль-
бертово пространство L2 со скалярным произведением (ξ1, ξ2) = Eξ1ξ2. Если ξ ∈ L2

имеют нормальное (гауссово) распределение, то обозначим это ξ ∼ 𝑁(0,σ2), где Eξ = 0
и Dξ = σ2.

Отображение η : I ⊂ R×Ω → R будем называть одномерным стохастическим про-
цессом. Его значение η = η(𝑡, ·) при каждом фиксированном 𝑡 ∈ I является случайной
величиной, т.е. η(𝑡, ·) ∈ L2, называемой сечением стохастического процесса. А значение
стохастического процесса η = η(·,ω) при каждом фиксированном ω ∈ Ω называет-
ся выборочной траекторией. Непрерывный стохастический процесс, чьи (независимые)
сечения гауссовы, называется гауссовым.

Важнейшим примером непрерывного гауссова стохастического процесса служит ви-
неровский процесс β = β(𝑡), моделирующий броуновское движение на прямой в теории
Эйнштейна – Смолуховского представленный формулой

β(𝑡) =
∞∑︁
𝑘=0

ξ𝑘 sin
π

2
(2𝑘 + 1)𝑡, (9)

где ξ𝑘 ∼ 𝑁(0, [π
2
(2𝑘 + 1)]−2) – независимые нормально распределенные величины. Се-

чения стохастического процесса β являются нормально распределенными случайными
величинами с Eβ(𝑡)=0 и Dβ(𝑡) = σ2𝑡 при некотором σ > 0. Сечения стохастиче-

ского процесса
∘
β распределены по нормальному закону с параметрами (0, σ

2

4𝑡
), то есть

∘
β(𝑡) ∼ 𝑁(0, σ

2

4𝑡
). В силу чего производную Нельсона – Гликлиха

∘
β броуновского движе-

ния β из (9) будем называть одномерным «белым шумом».
Справедлива следующая

Теорема 2. [7] Для любой вектор-функции 𝑢 ∈ 𝐶𝑝+1 (I,R𝑛) , начальных значений
ξ0 и стохастического процесса ϕ ∈ 𝐶𝑝+1𝐿2 (I,R𝑛), независимых для любого 𝑡 ∈ I,
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существует единственное решение ξ задачи (7), (8), заданное формулой

ξ (𝑡) = ξ𝑢 (𝑡) + ξϕ (𝑡) , ξ𝑢∈𝐶1 (I,R𝑛) , ξ𝑢∈𝐶1𝐿2 (I,R𝑛) ,

где ξ𝑢 – это детерминированная, а ξϕ – это стохастическая часть решения

ξ𝑢 (𝑡) =

∫︁ 𝑡

0

𝑈 𝑡−𝑠𝐿−1
1 𝑄𝐵𝑢 (𝑠) 𝑑𝑠+

𝑝∑︁
𝑞=0

(︀
𝐴−1 (I𝑛 −𝑄)𝐿

)︀𝑞
𝐴−1(𝑄− I𝑛)𝐵𝑢(𝑞)(𝑡),

ξϕ (𝑡) = 𝑈 𝑡ξ0

∫︁ 𝑡

0

𝑈 𝑡−𝑠𝐿−1
1 𝑄𝐵ϕ (𝑠) 𝑑𝑠+

𝑝∑︁
𝑞=0

(︀
𝐴−1 (I𝑛 −𝑄)𝐿

)︀𝑞
𝐴−1(𝑄− I𝑛)𝐵

∘
ϕ

(𝑞)
(𝑡).

Здесь 𝑈 𝑡 = lim𝑟→∞

(︁(︀
𝐿− 𝑡

𝑟
𝐴
)︀−1

𝐿
)︁𝑟

, 𝑄 = lim𝑟→∞
(︀
𝑟𝐿𝐿

𝑟 (𝐴)
)︀𝑝

, 𝐿𝐿
𝑟 (𝐴) = 𝐿(𝐿− 1

𝑟
𝐴)

−1,
а I𝑛 – единичная матрица порядка 𝑛.

Разделяя задачу на детерминированную и стохастическую показывается существо-
вании единственного решения стохастической системы леонтьевского типа.

Рассмотрим задачу управления (5), где функционал штрафа

𝐽 (𝑢) = 𝐽 (η (𝑢)) =
1∑︁

𝑘=0

∫︁ τ

0

E

⃦⃦⃦⃦
∘
η
(𝑘)

(𝑡)− η(𝑘)0 (𝑡)

⃦⃦⃦⃦2
𝑑𝑡 (10)

отражает близость реального наблюдения η0 (𝑡) и виртуального наблюдения η(𝑡), полу-
ченного на основе математической модели ИУ. Поскольку входной сигнал подвержен
шуму в цепях и на выходе ИУ, виртуальное наблюдение η(𝑡) является стохастическим
процессом. Обозначим через ̃︀η0 (𝑡) стохастический процесс η0 (𝑡)− η0 (𝑡) с нулевым ма-
тематическим ожиданием, где η0 (𝑡) – полезное наблюдение. Преобразуем функционал
штрафа:

𝐽 (𝑢) =
1∑︁

𝑘=0

∫︁ τ

0

E

⃦⃦⃦⃦
∘
η
(𝑘)

(𝑡)− η(𝑘)0 (𝑡)

⃦⃦⃦⃦2
𝑑𝑡 =

1∑︁
𝑘=0

∫︁ τ

0

E

⃦⃦⃦⃦
⃦𝐶 ∘
ξ
(𝑘)

(𝑡) +
∘
ν
(𝑘)

− (η0
(𝑘)(𝑡)+

∘̃︀η(𝑘)0 (𝑡))

⃦⃦⃦⃦
⃦
2

=

=
1∑︁

𝑘=0

∫︁ τ

0

⃦⃦⃦
𝐶ξ(𝑘)𝑢 (𝑡)− η0(𝑘)(𝑡)

⃦⃦⃦2
𝑑𝑡+

1∑︁
𝑘=0

∫︁ τ

0

E

⃦⃦⃦⃦
⃦𝐶 ∘
ξ
(𝑘)

ϕ (𝑡) +
∘
ν
(𝑘)
−

∘̃︀η(𝑘)0 (𝑡)

⃦⃦⃦⃦
⃦
2

𝑑𝑡.

Таким образом, шумы и случайные начальные условия не влияют на оптимальное дина-
мическое измерение как точку минимума функционала штрафа, они влияют только на
его значение.

В рамках второго подхода, при реализации численных методов, используется до-
пущение о том, что если о наличии шумов возможно судить только по зашумленности
сигнала, то допускается считать, что шумовые помехи воздействую только на выходе
ИУ, поэтому ϕ = 0. Классические цифровые фильтры применяются к наблюдаемому за-
шумленному сигналу, в результате чего получаем «полезное» (сглаженное) наблюдение.
Это позволяет для восстановления входного сигнала перейти от решения стохастиче-
ской задачи ОДИ (5), (7), (8), (10) к решению детерминированной задаче (1) – (5).
Вместе с тем, недостатки цифровых фильтров – эффект запаздывания и технические
сложности подбора параметров – могут нивелироваться наличием тестовых сигналов.
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Повторимся, что воссоздать реальные условия работы ИУ не всегда возможно, поэтому
авторами статьи ранее был предложен иной подход, названный MSA-метод. На основа-
нии теоремы отсчетов Котельникова формируется из данных зашумленного сигнала 𝑀
непересекающихся подмножеств, каждое из которых формируется как систематическая
выборка. Решая 𝑀 детерминированных задач ОДИ, для каждого отсчета получаем 𝑀
приближенных значений восстановленного сигнала, к этой совокупности для получения
окончательного решения могут применяться различные статистические методы усредне-
ния, что позволяет получать различные модификации MSA-метода.

2. Алгоритмическое обеспечение

Рассмотрим алгоритм работы комплекса программ, позволяющего осуществить срав-
нение и выбор цифрового фильтра, на рис. 4 представлена его блок-схема. Заметим, что
алгоритм описан для трех фильтров, но может быть использован и для большего числа,
прежде всего, классических цифровых фильтров и их комбинаций.

Общими начальными данными для всех вариантов поиска ОДИ являются, матрицы
системы 𝐴,𝐵,𝐶 массив значений выходного сигнала 𝑌0 = 𝑌0𝑖 в узловых точках 𝑡𝑖, 𝑖 =
= 0, 1, . . . , 𝑛 выходного сигнала и 𝑡𝑖+1 − 𝑡𝑖 = δ, 𝑡0 = 0, 𝑡𝑛 = τ.

Cплайн-метод решения задачи ОДИ подробно представленный в [2], является
основным и используется в каждом варианте применения цифрового фильтра. Кратко
представим этот метод. Отрезок [0, τ] делится на 𝑀 равных отрезков разбиения. На
каждом из них строятся интерполяционные полиномы 𝑦ℓ0𝑀(𝑡) степени ℓ ≤ (𝑛 − 1)/𝑀 .
Затем на каждом отрезке разбиения решается задача ОДИ, используя численный алго-
ритм решения дискретной задачи ОДИ [8].

При реализации сплайн метода приближенное измерение ищется на основе метода
Ритца в виде многочлена, степень которого, как правило, не превосходит степени интер-
поляционного многочлена 𝑦ℓ𝑗(𝑡) (в данном алгоритме равной одному или трем) и выби-
рается с учетом вычислительной мощности и заданного шага дискретизации. Основная
процедура сводится к поиску такого массива коэффициентов искомого многочлена, при
котором достигается минимум функционала 𝐽 (4). В алгоритме для этого реализует-
ся итерационный метод покоординатного многошагового спуска с памятью, при подбо-
ре шага используются результаты предшествующей итерации с выполнением проверки
условий ограничений на принадлежность множеству допустимых измерений. Завершает-
ся процедура нахождения минимума функционала штрафа по достижению абсолютной
величины разности значений функционала последней и предпоследней итерации цикла
меньшего значения, чем заданная погрешность. Приближенное ОДИ 𝑣ℓ𝑘 (𝑡) находится в
виде полинома степени ℓ, с условием непрерывности 𝑣ℓ𝑘 (τ𝑘) = 𝑣ℓ𝑘+1 (𝑡0,𝑘+1), правая гра-
ничная точка 𝑘-го отрезка разбиения совпадает с левой точкой (𝑘 + 1)-го отрезка раз-
биения. В результате получается непрерывная на [0,τ] сплайн-функция 𝑣ℓ(𝑡) =

⋃︀
𝑘 𝑣

ℓ
𝑘(𝑡).

Кратко опишем MSA-метод [2]. Важным является первый шаг выбора интервала
Δ, который называется интервалом дискретизации алгоритма во времени. Интервал
Δ определяет величину M=Δ/δ основных циклов алгоритма. В каждом цикле из Y0

формируются непересекающиеся подмножества Y0𝑗, j=1, ...,M, а объединение всех Y0𝑗𝑖

составляет 𝑌0. Элементы каждого подмножества выбираются с интервалом Δ, начиная с
𝑡0+𝑗−1. На каждом цикле задача ОДИ решается сплайн-методом. В результате получаем
приближенные оптимальные динамические измерения 𝑣ℓ𝑘(𝑡), 𝑘 = 1, . . . ,𝑀 . Используя
эти значения для каждой узловой точки, определяем простое среднее арифметическое
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значение 𝑣1(𝑡𝑖), которое принимается в качестве результата решения задачи 𝑣1.

Рисунок 4. Алгоритм выбора метода цифровой фильтрации

В [16] были показаны результаты применения различных модификаций метода
скользящих средних для решения задачи ОДИ – простое скользящее среднее, взве-
шенное линейно сглаженное скользящее среднее с увеличением (или уменьшением)
весовых коэффициентов до текущего значения, являющегося наибольшим в наборе по
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𝑁 точкам, взвешенное линейно сглаженное скользящее среднее с увеличением весовых
коэффициентов до текущего значения, являющегося наибольшим (или средним) в на-
боре по 𝑁 точкам. В результате сравнения модификаций, наиболее эффективным был
признан фильтр взвешенного линейно сглаженного скользящего среднего с увеличением
весовых коэффициентов до текущего значения, являющегося наибольшим в наборе по
𝑁 точкам, основная формула расчета имеет вид

𝑦0𝑖 =

∑︀𝑁−1
𝑘=0 (𝑁 − 𝑘)𝑌𝑖−𝑘

𝑁
∑︀𝑁−1

𝑘=0 (𝑘 + 1)
. (11)

Реализация МНК фильтра при различных его параметрах описана в [16]. Был
выбран МНК фильтр третьего порядка, система решается методом Крамера с расчетом
алгебраических дополнений 𝑍𝑖, 𝑄𝑖, 𝑅𝑖, 𝑆𝑖 и определителей 𝑊𝑖, 𝑈𝑖, 𝐹𝑖, 𝑉𝑖 для каждой 𝑖-ой
расчетной точки, а затем и полезного наблюдения 𝑌𝑖.

При сравнении фильтров часто используют такие показатели, как MSE – средний
квадрат ошибки, BNR – отношение исходного стандартного отклонения шума к сред-
неквадратичному шуму сглаженных данных в области базовой линии; максимальное
значение среднеквадратичной погрешности в области пика и др., ряд исследователей
отмечают, что для правильного выбора фильтра ясного критерия нет [4]. При реше-
нии задачи ОДИ сложность оценка эффективности фильтра обусловлена его влияни-
ем не только на подавление шума, но и влиянии его на погрешность решения задачи
ОДИ. Предлагается для сравнения использовать максимальное значение входного сиг-
нала (скачка при включении ИУ), и слагаемое функционала качества 𝐽*

𝐽(𝑢) =
1∑︁

𝑞=0

∫︁ τ

0

⃦⃦⃦
𝑦(𝑞)(𝑢, 𝑡)− 𝑦

(𝑞)
0 (𝑡)

⃦⃦⃦2
𝑑𝑡 = 𝐽* +

∫︁ τ

0

‖𝑦′(𝑢, 𝑡)− 𝑦′0(𝑡)‖
2
𝑑𝑡.

Это обусловлено тем, что второе слагаемое при быстро меняющихся сигнале дает боль-
шие значения расхождения производных.

3. Обработка результатов эксперимента

Опишем результаты натурного эксперимента. Датчик моделируется системой диф-
ференциальных уравнений вида (7), где

𝐿 =

(︂
1 0
0 1

)︂
, 𝐴 =

(︂
0 1

−25 −5

)︂
, 𝐵 =

(︂
0 0
0 25

)︂
, 𝐶 =

(︂
0 0
0 1

)︂
. Тестовый

сигнал представляет собой один период синуса с амплитудой 0,48V, частотой 2Hz, с
фазовым сдвигом 270 градусов и смещением на 0,48V: 𝑢 = 0, 48 sin(4π𝑡+ 3π/2) + 0, 48;
𝑡 ∈ [0; 2], представленный на рис. 1 синим цветом.

В результате стендовых испытаний получен набор {Y0𝑖}, содержащий 40000 точек
и зашумленный выходной сигнал, представленный на рис. 1 зеленым цветом. В данном
численном эксперименте положим δ=0,00005 и n=40000.

Представим результаты численного эксперимента по восстановлению входного сиг-
нала MSA-методом. На рис. 5 представлен результат одной итерации MSA-метода реше-
ния задачи ОДИ, красным цветом изображен восстановленный сигнал, зеленым цветом
– тестовый сигнал.
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Рисунок 5. Результат вычислительного эксперимента MSA-метод, 1 реализация

На рис. 6 представлен восстановленный сигнал после применения алгоритма усреднения,
Синий сигнал изображен восстановленный сигнал при количестве отрезков разбиения
𝑀=30, rрасным цветом изображен восстановленный сигнал при 𝑀=90, зеленым цветом
– тестовый сигнал.

Рисунок 6. Результат вычислительного эксперимента (MSA-метод)

В результате применения цифрового фильтра, основанного на методе скользящей сред-
ней, было получено полезное наблюдение (на рис. 7 выделено желтым цветом).
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Рисунок 7. Результат вычислительного эксперимента (цифровой фильтр скользящей
средней)

После применения сплайн метода ОДИ, был получен приближенный восстановленный
сигнал ОДИ (см. рис. 8).

Рисунок 8. Результат вычислительного эксперимента (метод скользящей средней и
сплайн метод)

В результате применения цифрового фильтра, основанного на методе наименьших
квадратов, было получено полезное наблюдение (на рис. 9 выделено желтым цветом).
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Рисунок 9. Результат вычислительного эксперимента (цифровой МНК фильтр)

После применения сплайн метода ОДИ, был получен приближенный восстановлен-
ный сигнал ОДИ (см. рис 10).

Рисунок 10. Результат вычислительного эксперимента (МНК фильтр и сплайн метод)

Для контроля работы алгоритмов по восстановленному и контрольному входных
сигналов, решая задачу (1), (2) были получены приближенное и полезное наблюдения.
На рис. 11 синим цветом изображено полезное наблюдение, красным цветом – восста-
новленное сплайн-методом. Результат расчета показал высокую степень точности работы
алгоритмов.
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Рисунок 11. Результат вычислительного эксперимента

4. Заключение

Результаты вычислительных экспериментов показывают адекватность математиче-
ских моделей и эффективность вычислительных методов (см. табл. 1). Полученные ре-
зультаты свидетельствуют о том, что для восстановления пика входного сигнала наи-
лучшим является MSA-фильтр, а для нивелирования запаздывания MNK фильтр.

Таблица 1. Сравнительный анализ результатов вычислительного эксперимента
Максимальное
значение сиг-
нала

Значение 𝑡𝑖 при
максимальном
значении

Контрольный сигнал 0,96 0,25
Восстановленный сигнал (MSA-метод) 0,9485976 0,3450720

Восстановленный сигнал (метод сколь-
зящей средней)

0,89346 0,3349464

Восстановленный сигнал (МНК-
фильтр)

0,896927 0,30081922

ПРИМЕЧАНИЕ

1 Исследование частично выполнено при финансовой поддержке Российского научного
фонда (проект 24-11-20037).
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Abstract.
The restoration of dynamically distorted signals over short time intervals

represents a complex inverse problem in dynamic measurements. In the presence
of various types of noise, the output signal becomes corrupted, further compli-
cating the task. To date, the theory of optimal dynamic measurements has
been developed, employing methods from optimal control theory, Sobolev-type
equations, and stochastic differential equations, alongside advanced numerical
techniques. Previously, the authors conducted multiple studies advancing numeri-
cal methods for retrieving the input signal as a solution to the optimal control
problem of dynamic measurement and proposed a new numerical algorithm for
its resolution. When noise is present in the output signal, it is crucial not only to
ensure the efficiency of the signal recovery algorithm, considering the measuring
device’s inertia, but also to select the most effective digital filter. This article
presents an algorithm within a software tool that facilitates the selection of
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one of three filters: a moving average filter, the Savitzky—Golay filter (based
on the least squares method) followed by the optimal dynamic measurement
algorithm, and the MSA method (an author-developed technique based on spline
methods followed by averaging). The MSA method is not merely a digital filter;
it integrates comprehensive noise filtering with an algorithm for optimal dynamic
measurement. Moreover, it can be applied both in the presence and absence of
noise and other disturbances. The novelty of these results lies in a systematic and
comprehensive evaluation of the effectiveness and applicability of noise filtering
methods for restoring dynamically distorted signals. This article provides the
necessary theoretical background, general algorithmic schemes, experimental
data, and results demonstrating the performance of the proposed approaches.

Key words: Optimal dynamic measurements, digital signal filtering, algorithm,
computational experiments, Leontief-type system.
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