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Аннотация. В случае римановой метрики 𝑑𝑠2 =
∑︀2

𝑖,𝑗=1 𝑔𝑖𝑗(𝑧)𝑑𝑥𝑖𝑑𝑥𝑗, за-
данной в R2∖𝐾 (𝐾 — компакт), известно, что одним из признаков конформной
параболичности абстрактной поверхности 𝐹 = (R2 ∖𝐾, 𝑑𝑠2) является условие
гармоничности координатных функций в данной метрике: Δ𝑥1 = 0, Δ𝑥2 = 0.
Работа посвящена обобщению этого признака.

Ключевые слова: параболичность типа, вариационная емкость, квази-
конформные отображения, эллиптические операторы, метод Перрона.

1. Введение

1. Хорошо известен следующий факт (см. по этому поводу, например, [8; 14; 20]), вос-
ходящий к теории униформизации римановых поверхностей: всякая некомпактная дву-
мерная односвязная поверхность 𝐹 класса 𝐶1 конформно эквивалентна либо плоскости
R2, либо кругу конечного радиуса. В соответствии с этим некомпактные двумерные од-
носвязные поверхности 𝐹 делятся на два класса — поверхности параболического типа
(те, которые конформно эквивалентны плоскости) и класс поверхностей гиперболиче-
ского типа (те, которые конформно эквивалентны кругу). В связи с этим, естественно
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возникает задача (Л. Альфорс, [21]) нахождения эффективных признаков параболично-
сти или гиперболичности типа односвязных поверхностей. Эта задача хорошо известна,
получила название «проблема типа» и хорошо отражена в литературе (см. наряду с
цитированными работами, также классические статьи С. Гильдебрандта [26], Ш.Т. Яу
[30], Дж. Милнора [29]).

В последние десятилетия прошлого века получил развитие подход к определению
признаков параболичности или гиперболичности типа на основе модульно-емкостных
оценок. В частности, в работах В.М. Миклюкова [13; 14] были найдены модульно-
емкостные оценки из которых легко вытекает параболичность или гиперболичность
типа абстрактной поверхности 𝐹 = (𝐷, 𝑑𝑠2). В этих работах показано, что факт па-
раболичности типа является ключевым при доказательстве теорем Лиувиллева типа,
а также известных теорем С.Н. Бернштейна о линейности целых решений уравнения
минимальных поверхностей и Л. Берса о существовании предела градиента решения,
определенного над внешностью компакта в R2. Из недавних работ по этой тематике,
отметим работу [8]. Вообще, понятие типа можно обобщать в различных направлениях.
Так, хорошо известно, что знание типа граничных множеств играет ключевую роль в
вопросах изучения асимптотического поведения решений эллиптических уравнений, за-
данных на некомпактных римановых многообразиях. В связи с этим можно отметить,
например, следующие недавние работы [7; 10; 12].

Наша работа посвящена некоторым обобщениям признака параболичности типа
относительно бесконечно удаленной точки, полученного автором в [9]. В отличии от
упомянутых выше работ условия параболичности у нас имеют вид дифференциальных,
а не модульно-емкостных соотношений. В некоторых случаях такие дифференциальные
соотношения возникают естественным образом и их проверка оказывается значительно
более простой нежели явное построение модульно-емкостных оценок или указанного в
определении отображения. Например, в классической работе Оссермана [17] эти условия
являются простыми следствиями обращения в нуль вектора средней кривизны.
2. Пусть Φ(𝑧, 𝑦,𝑋) = Φ(𝑥1, 𝑥2, 𝑦,𝑋1, 𝑋2) ≥ 0, 𝑧 = (𝑥1, 𝑥2), 𝑋 = (𝑋1, 𝑋2) ∈ R2, 𝑦 ∈ R
— измеримая по 𝑧, непрерывная по совокупности переменных 𝑦,𝑋 (при фиксированном
𝑧) функция, причем Φ(𝑧, 𝑦, 0) = Φ(𝑥1, 𝑥2, 𝑦, 0, 0) = 0.

Замечание 1. Выбор обозначения 𝑧 = (𝑥1, 𝑥2), вместо ожидаемого 𝑥 = (𝑥1, 𝑥2), связан
с тем, что далее в работе будут использоваться комплекснозначные функции от пере-
менной 𝑧 = 𝑥1 + 𝑖𝑥2 и т.п. Переменные 𝑧 = 𝑥1 + 𝑖𝑥2 ∈ C и 𝑧 = (𝑥1, 𝑥2) ∈ R2 будут
отождествляться. Другие подобные отождествления вводятся по мере необходимости
аналогичным образом.

Также мы будем придерживаться следующего стандартного соглашения. Как часто
бывает принято, если некоторые переменные, скажем 𝑧 и ξ, связаны функциональной
зависимостью, то будем это записывать используя символы тех же переменных 𝑧 = 𝑧(ξ)
и ξ = ξ(𝑧). Функции 𝑧(ξ) и ξ(𝑧) являются, при этом, взаимно обратными.

Для всякой области 𝐷 ⊂ R2 определим функционал

𝐼Φ(𝑓,𝐷) =

∫︁
𝐷

Φ(𝑧, 𝑓,∇𝑓)𝑑𝑥1𝑑𝑥2.

Здесь интеграл Лебега понимается в несобственном смысле, то есть случай неограни-
ченности области 𝐷 допускается.

6 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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Заметим, что в случае дифференцируемости Φ, для рассматриваемых функциона-
лов 𝐼Φ(𝑓,𝐷) уравнение Эйлера—Лагранжа имеет вид

div Φ𝑋(𝑧, 𝑓,∇𝑓)− Φ𝑦(𝑧, 𝑓,∇𝑓) = 0,

где Φ𝑋(𝑧, 𝑦,𝑋) = (Φ𝑋1(𝑧, 𝑦,𝑋),Φ𝑋2(𝑧, 𝑦,𝑋)). Это уравнение описывает экстремали дан-
ного функционала.
Определение 1. Пусть Δ — произвольная подобласть 𝐷 и 𝑃,𝑄 ⊂ Δ — непустые,
замкнутые относительно Δ, непересекающиеся множества. Тройка множеств (𝑃,𝑄; Δ)
описанного вида называется конденсатором.

Непрерывная функция ϕ ∈ 𝑊 1,2(Δ) т.ч.

ϕ|𝑃 = 0, ϕ|𝑄 = 1,

называется допустимой для конденсатора (𝑃,𝑄; Δ).
Определение 2. Число

capΦ(𝑃,𝑄; Δ) = inf 𝐼Φ(ϕ,Δ),

где точная нижняя грань берется по всем допустимым функциям, называется вариаци-
онной Φ-емкостью конденсатора (𝑃,𝑄; Δ).

Из этого определения вытекает, что для любой пары конденсаторов (𝑃,𝑄,Δ),
(𝑃 ′, 𝑄′,Δ) т.ч. 𝑃 ⊂ 𝑃 ′, 𝑄 ⊂ 𝑄′ выполнено следующее неравенство:

capΦ(𝑃,𝑄; Δ) ≤ capΦ(𝑃
′, 𝑄′; Δ).

Это свойство называется свойством монотонности емкости.
Далее считаем, что 𝐷 имеет вид 𝐷 = R2 ∖𝐾, где 𝐾 ⊂ R2 — односвязный компакт.

Определение 3. Последовательность ограниченных областей {𝐷𝑘}∞𝑘=1 со свойствами:

1) 𝐷𝑘 ⊂ 𝐷𝑘+1; 2)
∞⋃︀
𝑘=1

𝐷𝑘 = R2,

называется исчерпанием R2.

Если {𝐷𝑘}∞𝑘=1 — некоторое исчерпание R2, то, для всех 𝑘 начиная с некоторого 𝑘0,
выполнено 𝐾 b 𝐷𝑘.

Определение 4. Говорят, что область 𝐷 = R2 ∖𝐾 имеет Φ-параболический тип в бес-
конечно удаленной точке, если для любого исчерпания R2 последовательностью ограни-
ченных областей {𝐷𝑘}∞𝑘=1 и для любого 𝑖, фиксированного так, что 𝐾 b 𝐷𝑖, выполнено

lim
𝑘→∞
𝑘>𝑖

capΦ(𝐷𝑖,R2 ∖𝐷𝑘;R2) = 0. (1)

Из свойства монотонности емкости следует, что 𝐷 = R2 ∖ 𝐾 имеет Φ-параболи-
ческий тип в бесконечно удаленной точке, если равенство (1) выполняется хотя бы для
одного исчерпания при некотором фиксированном 𝑖 т.ч. 𝐾 b 𝐷𝑖.

Для областей вида 𝐷 = R2 ∖𝐾 обозначим через 𝒩 (𝐷) совокупность всех функций
вида Ψ(𝑋) = Ψ(𝑋1, 𝑋2) ≥ 0 т.ч. Ψ(0, 0) = 0, относительно которых плоскость R2 имеет
Ψ-параболический тип.

Пример. Приведем примеры функций класса 𝒩 (𝐷).
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Пусть Ψ(𝑋) = |𝑋|𝑝 = (𝑋2
1 +𝑋2

2 )
𝑝/2, 𝑝 ≥ 2. Пусть 𝑅 > 𝑟 > 0. Рассмотрим кольце-

вой конденсатор с 𝑃𝑟 = {𝑧 = (𝑥1, 𝑥2) : 𝑥2
1+𝑥2

2 ≤ 𝑟2}, 𝑄𝑅 = {𝑧 = (𝑥1, 𝑥2) : 𝑥2
1+𝑥2

2 ≥ 𝑅2},
Δ = R2. Оценим емкость данного конденсатора. Положим

𝑓(𝑧) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ln |𝑧|
𝑟

ln 𝑅
𝑟

, при 𝑟 ≤ |𝑧| ≤ 𝑅,

1, при |𝑧| > 𝑅,

0, при |𝑧| < 𝑟.

Для этой функции, имеем

capΨ(𝑃𝑟, 𝑄𝑅; Δ) ≤
∫︁

𝐾𝑟,𝑅

|∇𝑓 |𝑝𝑑𝑥1𝑑𝑥2 =

⎧⎨⎩
2π
ln 𝑅

𝑟

, при 𝑝 = 2,

2π
(𝑝−2) ln𝑝 𝑅

𝑟

(︀
1

𝑟𝑝−2 − 1
𝑅𝑝−2

)︀
, при 𝑝 > 2,

(2)

где 𝐾𝑟,𝑅 = {𝑧 : 𝑟 < |𝑧| < 𝑅}, откуда, lim
𝑅→+∞

capΨ(𝑃𝑟, 𝑄𝑅; Δ) = 0, и, как следствие

Ψ-параболичность типа R2 в бесконечно удаленной точке.
3. Пусть 𝑎𝑖𝑗(𝑧) (𝑖, 𝑗 = 1, 2, 𝑎𝑖𝑗 = 𝑎𝑗𝑖) — измеримые функции, причем матрица 𝐴 =
= {𝑎𝑖𝑗(𝑧)} всюду положительно определена. Важным модельным примером Φ является
положительно определенная квадратичная форма

Φ(𝑧,𝑋) = 𝑎(𝑧,𝑋) =
2∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑋𝑖𝑋𝑗. (3)

Здесь 𝑧 ∈ 𝐷,𝑋 = (𝑋1, 𝑋2) ∈ R2. С этой формой ассоциирован функционал

𝐼𝑎(𝑓,𝐷) =

∫︁
𝐷

2∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑓𝑥𝑖
𝑓𝑥𝑗

𝑑𝑥1𝑑𝑥2 (4)

и можно говорить об 𝑎-емкости и, значит, 𝑎-параболичности.
Если предположить, что найдется постоянная 𝐶 > 0 т.ч.

∀𝑧 ∈ 𝐷 ∀𝑋 ∈ R2 𝑎(𝑧,𝑋) ≤ 𝐶(𝑋2
1 +𝑋2

2 ),

то, очевидно, 𝑎-параболичность будет следовать из конформной параболичности.

2. Вспомогательные факты

4. Отметим некоторые необходимые для дальнейшего элементарные факты, сформули-
рованные в удобной для нас форме.
Лемма 1. Предположим, что в области 𝐷 ⊂ R2 задана матрица измеримых функций
{𝑎𝑖𝑗(𝑧)} и для некоторых функций 𝑓(𝑧),ϕ(𝑧) ∈ 𝑊 1,2

loc (𝐷) существует интеграл∫︁
𝐷

2∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑓𝑥𝑖
ϕ𝑥𝑗

𝑑𝑥1𝑑𝑥2.

8 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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Предположим, что
ξ = (ξ1(𝑧), ξ2(𝑧)), (5)

квазиконформный гомеоморфизм 𝐷 на 𝐷′ = ξ(𝐷). Тогда верно равенство∫︁
𝐷

2∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑓𝑥𝑖
ϕ𝑥𝑗

𝑑𝑥1𝑑𝑥2 =

∫︁
ξ(𝐷)

2∑︁
𝑖,𝑗=1

𝑎̃𝑖𝑗(ξ)𝑓ξ𝑖ϕξ𝑗𝑑ξ1𝑑ξ2,

где матрица коэффициентов (𝑎̃𝑖𝑗(ξ))
2
𝑖,𝑗=1 связана с матрицей (𝑎𝑖𝑗(𝑧))

2
𝑖,𝑗=1 формулой(︂

𝑎̃11 𝑎̃12
𝑎̃12 𝑎̃22

)︂
=

1

𝐽

(︂
ξ1𝑥1 ξ1𝑥2

ξ2𝑥1 ξ2𝑥2

)︂(︂
𝑎11 𝑎12
𝑎12 𝑎22

)︂(︂
ξ1𝑥1 ξ2𝑥1

ξ1𝑥2 ξ2𝑥2

)︂
, (6)

где

𝐽 =
𝜕(ξ1, ξ2)

𝜕(𝑥1, 𝑥2)
=

⃒⃒⃒⃒
ξ1𝑥1 ξ1𝑥2

ξ2𝑥1 ξ2𝑥2

⃒⃒⃒⃒
. (7)

Следствие 1. Пусть с матрицей 𝐴 связан дифференциальный оператор дивергент-
ного вида

𝐿𝐴 =
𝜕

𝜕𝑥1

(︂
𝑎11(𝑧)

𝜕

𝜕𝑥1

+ 𝑎12(𝑧)
𝜕

𝜕𝑥2

)︂
+

𝜕

𝜕𝑥1

(︂
𝑎12(𝑧)

𝜕

𝜕𝑥1

+ 𝑎22(𝑧)
𝜕

𝜕𝑥2

)︂
.

Предположим, что функция 𝑓 удовлетворяет дифференциальному неравенству
𝐿𝐴𝑓 ≤ 0 (соотв. 𝐿𝐴 ≥ 0) в слабом смысле, т.е. для всякой ϕ(𝑧) ∈ 𝑊 1,2

0 (𝐷), ϕ(𝑧) > 0∫︁
𝐷

2∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑓𝑥𝑖
ϕ𝑥𝑗

𝑑𝑥1𝑑𝑥2 ≥ 0 (соотв.
∫︁
𝐷

2∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑓𝑥𝑖
ϕ𝑥𝑗

𝑑𝑥1𝑑𝑥2 ≤ 0).

Тогда функция 𝑓(𝑧(ξ)) удовлетворяет в ξ(𝐷) неравенству 𝐿𝐴 ≤ 0 (соотв. 𝐿𝐴 ≥ 0 в
слабом смысле, т.е. для всякой ϕ̃(ξ) ∈ 𝑊 1,2

0 (ξ(𝐷)), ϕ̃(ξ) > 0∫︁
ξ(𝐷)

2∑︁
𝑖,𝑗=1

𝑎̃𝑖𝑗(ξ)𝑓ξ𝑖ϕ̃ξ𝑗𝑑ξ1𝑑ξ2 ≥ 0 (соотв.
∫︁
ξ(𝐷)

2∑︁
𝑖,𝑗=1

𝑎̃𝑖𝑗(ξ)𝑓ξ𝑖ϕ̃ξ𝑗𝑑ξ1𝑑ξ2 ≤ 0),

где 𝐿𝐴𝑓 — дифференциальный оператор дивергентного вида в ξ(𝐷), матрица 𝐴
которого связана с матрицей 𝐴 соотношением (6).

Замечание 2. Из формулы (6) вытекает, что величина δ = det(𝑎𝑖𝑗(𝑧)) инвариантна при
невырожденных заменах переменных.

Оператор 𝐿𝐴, заданный в области 𝐷 будем называть равномерно эллиптическим,
если его характеристическая форма (3) удовлетворяет неравенству

𝐶1(𝑋
2
1 +𝑋2

2 ) ≤ 𝑎(𝑧,𝑋) ≤ 𝐶2(𝑋
2
1 +𝑋2

2 ),

почти всюду в 𝐷. Если такое неравенство выполнено на всякой подобласти 𝐷′ b 𝐷,
то 𝐿𝐴 будем называть локально равномерно эллиптическим. По умолчанию далее все
рассматриваемые ниже операторы такого вида предполагаются локально равномерно эл-
липтическими.

Для наших дальнейших целей целесообразно ввести следующее понятие.
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Определение 5. Пусть 𝑏(𝑧,𝑋) =
2∑︀

𝑖,𝑗=1
𝑏𝑖𝑗(𝑧)𝑋𝑖𝑋𝑗 — положительно определенная при

каждом 𝑧 ∈ 𝐷 квадратичная форма. Формы (3) и 𝑏(𝑧,𝑋) мы будем называть соизмери-
мыми в 𝐷, если найдутся положительные постоянные 𝐶1 ≤ 𝐶2, т.ч.

∀𝑧 ∈ 𝐷 ∀𝑋 ∈ R2 𝐶1𝑏(𝑧,𝑋) ≤ 𝑎(𝑧,𝑋) ≤ 𝐶2𝑏(𝑧,𝑋).

Лемма 2. Пусть в области 𝐷 заданы две квадратичные формы

𝑎(𝑧,𝑋) =
2∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑧)𝑋𝑖𝑋𝑗, 𝑏(𝑧,𝑋) =
2∑︁

𝑖,𝑗=1

𝑏𝑖𝑗(𝑧)𝑋𝑖𝑋𝑗,

с измеримыми коэффициентами. Пусть ξ = ξ(𝑧) : 𝐷 → 𝐷′ удовлетворяет условиям
леммы 1 и

𝑎̃(ξ, 𝑌 ) =
2∑︁

𝑖,𝑗=1

𝑎̃𝑖𝑗(ξ)𝑌𝑖𝑌𝑗, 𝑏̃(ξ, 𝑌 ) =
2∑︁

𝑖,𝑗=1

𝑏̃𝑖𝑗(ξ)𝑌𝑖𝑌𝑗,

квадратичные формы в 𝐷′ = ξ(𝐷) с матрицами коэффициентов (6) и(︃
𝑏̃11 𝑏̃12
𝑏̃12 𝑏̃22

)︃
=

1

𝐽

(︂
ξ1𝑥1 ξ1𝑥2

ξ2𝑥1 ξ2𝑥2

)︂(︂
𝑏11 𝑏12
𝑏12 𝑏22

)︂(︂
ξ1𝑥1 ξ2𝑥1

ξ1𝑥2 ξ2𝑥2

)︂
.

Формы 𝑎̃(ξ, 𝑌 ) и 𝑏̃(ξ, 𝑌 ) соизмеримы в 𝐷′ = ξ(𝐷) тогда и только, когда формы
𝑎(𝑧,𝑋) и 𝑏(𝑧,𝑋) соизмеримы в 𝐷.

Лемма 3. Пусть форма 𝑎(𝑧, 𝑌 ) соизмерима в области 𝐷 с формой |𝑌 |2 = 𝑌 2
1 + 𝑌 2

2 ,
отображение (6) конформное. Тогда форма 𝑎̃(ξ, 𝑋) соизмерима в области 𝐷′ = ξ(𝐷)
с формой |𝑋|2 = 𝑋2

1 +𝑋2
2 .

Доказательства лемм 1 и 2 легко устанавливаются непосредственной проверкой,
с учетом того, что благодаря квазиконформности применение формулы замены перемен-
ных в двойном интеграле, а также цепного правила законны (см. [5, Глава 5], [27; 28]).

Доказательство леммы 3 легко вытекает из (5) и условий Коши—Римана. Дей-
ствительно, пусть (6) удовлетворяет условиям леммы. В силу конформности данное
отображение не вырождается внутри 𝐷 и удовлетворяет в ней условиям Коши—Римана:{︂

ξ1𝑥1 = ξ2𝑥2 ,
ξ1𝑥2 = −ξ2𝑥1 .

(8)

Для удобства положим α = ξ1𝑥1 , β = ξ1𝑥2 . Из (8) вытекает, что якобиан 𝐽 = α2 + β2.
Согласно (6) и (8), имеем(︂

𝑎̃11 𝑎̃12
𝑎̃12 𝑎̃22

)︂
=

1

𝐽

(︂
α β

−β α

)︂(︂
𝑎11 𝑎12
𝑎12 𝑎22

)︂(︂
α −β
β α

)︂
.

Полагая cos𝜗 = α√
𝐽
, sin𝜗 = β√

𝐽
, получаем(︂

𝑎̃11 𝑎̃12
𝑎̃12 𝑎̃22

)︂
=

(︂
cos𝜗 sin𝜗
− sin𝜗 cos𝜗

)︂(︂
𝑎11 𝑎12
𝑎12 𝑎22

)︂(︂
cos𝜗 − sin𝜗
sin𝜗 cos𝜗

)︂
.

10 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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Имеем далее,
2∑︁

𝑖,𝑗=1

𝑎̃𝑖𝑗𝑋𝑖𝑋𝑗 =
2∑︁

𝑖,𝑗=1

𝑎𝑖𝑗𝑌𝑖𝑌𝑗, (9)

где
𝑌1 = cos𝜗 𝑋1 − sin𝜗 𝑋2, 𝑌2 = sin𝜗 𝑋1 + cos𝜗 𝑋2.

Легко видеть 𝑌 2
1 + 𝑌 2

2 = 𝑋2
1 +𝑋2

2 , что вместе с равенством (9) влечет нужное.
Лемма доказана.

5. Пусть 𝐵1 ⊂ R2 — единичный круг, в котором определен равномерно эллиптический
оператор

𝐿𝐴 =
𝜕

𝜕𝑥1

(︂
𝑎11(𝑧)

𝜕

𝜕𝑥1

+ 𝑎12(𝑧)
𝜕

𝜕𝑥2

)︂
+

𝜕

𝜕𝑥1

(︂
𝑎12(𝑧)

𝜕

𝜕𝑥1

+ 𝑎22(𝑧)
𝜕

𝜕𝑥2

)︂
с измеримыми коэффициентами. Говоря ниже об 𝐿𝐴-решениях (𝐿𝐴-суперрешениях, 𝐿𝐴-
субрешениях) мы понимаем под ними слабые решения уравнения (неравенства)

𝐿𝐴𝑓 = 0, (соответственно 𝐿𝐴𝑓 ≤ 0, 𝐿𝐴𝑓 ≥ 0).

Для 𝐿𝐴-супер- и субрешений мы употребляем также как синонимы термины 𝐿𝐴-супер-
гармоническая и 𝐿𝐴-субгармоническая функция. Нам потребуется следующий частный
факт вытекающий из хорошо известного метода Перрона верхних и нижних функций
и теоремы о представлении решений через гармонические функции и квазиконформные
отображения [22, Theorem 16.1.4. стр. 429].
Лемма 4. Пусть [𝑃1, 𝑃2] ⊂ 𝜕𝐵1 — замкнутая дуга и [𝑃1, 𝑃2]

𝐶 = 𝜕𝐵1 ∖ [𝑃1, 𝑃2] —
дополняющая открытая дуга. Предположим, ϕ(𝑧) : 𝜕𝐵1 → R функция, т.ч.

1) ϕ|[𝑃1,𝑃2] = +∞,
2) ϕ(𝑧) непрерывна на [𝑃1, 𝑃2]

𝐶 , и ϕ(𝑧) → +∞ при стремлении к 𝑃𝑖 вдоль
[𝑃1, 𝑃2]

𝐶 .
Тогда не существует 𝐿𝐴-супергармонической в 𝐵1 функции 𝑓(𝑧), т.ч. 𝑓(𝑧)|𝜕𝐵1 =

= ϕ(𝑧).
Доказательство. Предположим противное, т.е. 𝐿𝐴-супергармоническая функция

𝑓(𝑧) с указанными граничными свойствами существует.
Для определенности, пусть при движении по дуге [𝑃1, 𝑃2] окружности 𝜕𝐵1 от 𝑃1 к

𝑃2 движение происходит против часовой стрелки. Зафиксируем невырожденную замкну-
тую дугу [𝑄2, 𝑄1] ⊂ [𝑃1, 𝑃2]

𝐶 , такую, что при движении от 𝑄2 к 𝑄1 (непересекающему
[𝑃1, 𝑃2]) движение происходит против часовой стрелки. Через [𝑄2, 𝑃2) и [𝑄1, 𝑃1) будем
обозначать полуоткрытые дуги дополняющие [𝑃1, 𝑃2] ∪ [𝑄2, 𝑄1] до полной окружности
𝜕𝐵1. Для дуги [𝑄2, 𝑃2) при движении от 𝑄2 к 𝑃2 движение происходит по часовой
стрелки, а для [𝑄1, 𝑃1) при движение от 𝑄1 к 𝑃1 движение происходит против часовой
стрелке.

Положим 𝑛0 минимальное натуральное число большее 𝑁 = min
𝑥∈[𝑄2,𝑃2)∪[𝑄1,𝑃1)

(𝑓(𝑧)).

Для всякого натурального 𝑛 > 𝑛0 пусть α𝑛 такая точка дуги [𝑄2, 𝑃2), что ϕ(α𝑛) = 𝑛
и на поддуге [α𝑛, 𝑃2) других точек α в которых было бы ϕ(α) = 𝑛 нет. Аналогично,
обозначим β𝑛 точку дуги [𝑄1, 𝑃1), для которой ϕ(β𝑛) = 𝑛 и на поддуге [β𝑛, 𝑃1) других
точек β в которых было бы ϕ(β) = 𝑛 нет. Указанные точки существуют ввиду условия
2) леммы. Кроме того, отметим, что α𝑛 → 𝑃2, β𝑛 → 𝑃1 при 𝑛 → +∞ и кроме того на
соответствующих открытых дугах (α𝑛, 𝑃2) и (β𝑛, 𝑃2) выполнено ϕ(𝑧) > 𝑛.

ISSN 2587-6325. Математ. физика и компьютер. моделирование. 2025. T. 28. № 4 11
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В силу равномерной эллиптичности оператора 𝐿𝐴 задача Дирихле

𝐿𝐴𝑢 = 0, 𝑢|𝜕𝐷′(𝑧) = ϕ(𝑧)

разрешима для всякой области 𝐷′ ⊂ 𝐵1 с гладкой границей и непрерывной функции
ϕ(𝑧) : 𝜕𝐷′ → R. Поэтому применим метод Перрона (см. [25]) к исследованию разреши-
мости задачи Дирихле с граничной функцией ϕ(𝑧).

Пусть 𝒰ϕ класс верхних функций для функции ϕ(𝑧) : 𝜕𝐵1 → R. В силу нашего
предположения 𝑓(𝑧) ∈ 𝒰ϕ и, значит, класс не пуст 𝒰ϕ ̸= ∅. Определим функцию 𝑓0(𝑧) =
= inf

𝑔(𝑧)∈𝒰ϕ

𝑔(𝑧). Согласно методу Перрона данная функция является 𝐿𝐴-гармонической.

Необходимо пояснить, что 𝑓0(𝑧) ̸≡ const и 𝑓0(𝑧) = +∞ на [𝑃1, 𝑃2]. Первое очевидно,
ввиду того что оператор 𝐴 равномерно эллиптический и так как граница 𝜕𝐵1 гладкая,
то все ее точки регулярны. Поэтому для точек дуги 𝑧0 ∈ [𝑃1, 𝑃2]

𝐶 мы имеем lim
𝑧→𝑧0
𝑧∈𝐵1

𝑓0(𝑧) =

= ϕ(𝑧0).
Чтобы доказать второе определим на 𝜕𝐵1 последовательность функций при 𝑛 > 𝑛0

ψ𝑛(𝑧) =

{︃
𝑛 на [α𝑛, 𝑃2) ∪ [β𝑛, 𝑃2) ∪ [𝑃1, 𝑃2],

ϕ(𝑧) на 𝜕𝐵1 ∖ ([α𝑛, 𝑃2) ∪ [β𝑛, 𝑃2) ∪ [𝑃1, 𝑃2]),

и, соответствующую им последовательность задач Дирихле

𝐿𝐴𝑢𝑛 = 0, 𝑢|𝜕𝐵1(𝑧) = ψ𝑛(𝑧).

Функции ψ𝑛(𝑧) непрерывны на 𝜕𝐵1, оператор 𝐿𝐴 равномерно эллиптический, заданный
в дивергентном виде. Поэтому данные задачи имеют решения [11], которые обозначим
𝑓𝑛(𝑧). В силу принципа максимума-минимума и специфики граничных значений этих
решений имеем

a) ∀𝑛 > 𝑛0 𝑓𝑛(𝑧) ≤ 𝑓𝑛+1(𝑧) в 𝐵1;
b) ∀𝑛 > 𝑛0 𝑓𝑛(𝑧) ≤ 𝑔(𝑧) в 𝐵1 ∀𝑔(𝑧) ∈ 𝒰ϕ.
В силу b) тогда в 𝐵1 имеем ∀𝑛 > 𝑛0 𝑓𝑛(𝑧) ≤ 𝑓0(𝑧), но тогда в силу a) 𝑓0(𝑧) → +∞

при 𝑥 → [𝑃1, 𝑃2], 𝑧 ∈ 𝐵1. Существование функции 𝑓0(𝑧) с необходимыми свойствами
установлено.

В силу теоремы 16.1.4. [22] функция 𝑓0(𝑧) представима в виде 𝑓0(𝑧) = ℎ(𝑤(𝑧)), где
𝑤(𝑧) : C → C — квазиконформный гомеоморфизм, а ℎ гармоническая в 𝑤(𝐵1) функция.

Очевидно, ℎ|[𝑃1,𝑃2] = +∞ и ℎ(𝑤) ограничена снизу. Последнее невозможно, так
как тогда в 𝑤(𝐵1) существует голоморфная не равная тождественно 0 функция, обра-
щающаяся в 0 на граничной дуге 𝑤([𝑃1, 𝑃2]), что в свою очередь невозможно в силу
теоремы единственности для голоморфных функций. Указанной функцией является

𝑔(𝑤) =
1

ℎ(𝑤) + 𝑖ℎ*(𝑤)
,

где ℎ*(𝑤) — сопряженная с ℎ(𝑤) гармоническая функция. Лемма доказана.

3. Формы класса Λqc
𝑥2

Для всякой 1-формы θ(𝑋) : R2 → R через θ# будем обозначать вектор, т.ч. θ(𝑋) =
= ⟨θ#, 𝑋⟩. В частности, всякой дифференциальной 1-форме θ(𝑧) = θ1(𝑧)𝑑𝑥1 + θ2(𝑧)𝑑𝑥2

будем ставить в соответствии векторное поле θ#(𝑧) = (θ1(𝑧), θ2(𝑧)).

12 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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В пространстве 1-форм Λ1(R2) вводим скалярное произведение

⟨θ,ω⟩ = ⟨θ#,ω#⟩

и длину

|θ| =
√︁
⟨θ, θ⟩.

Определение 6. Пусть θ(𝑧) = θ1(𝑧)𝑑𝑥1 + θ2(𝑧)𝑑𝑥2 — дифференциальная форма, класса
𝐿2,loc(𝐷), заданная в области 𝐷. Форма θ(𝑧) называется 𝑊 1,2

loc -точной в 𝐷, если суще-
ствует непрерывная, дифференцируемая п.в. в функция 𝑓(𝑧) ∈ 𝑊 1,2

loc (𝐷) т.ч. θ(𝑧) = 𝑑𝑓(𝑧)
п.в. в 𝐷. Всякую такую функцию 𝑓(𝑧) будем в дальнейшем называть первообразной для
формы θ.

Если θ(𝑧) не является 𝑊 1,2
loc -точной в 𝐷, но является таковой в любой односвязной

подобласти 𝐷′ ⊂ 𝐷, то ее мы будем называть локально 𝑊 1,2
loc -точной в 𝐷.

Как и гладком случае, очевидно, в случае односвязной области 𝐷 всякая локально
𝑊 1,2

loc -точная форма является 𝑊 1,2
loc -точной.

Замечание 3. Известно ([6; 16; 24],[5, Гл. 2, п.5], [15, раздел 3.2.3]), что если 𝑓(𝑧) ∈
∈ 𝑊 1,𝑝

loc (𝐷) при 𝑝 > 2 или 𝑓(𝑧) ∈ 𝑊 1,1
loc (𝐷) и 𝑓(𝑧) монотонна по Лебегу, то требование

дифференцируемости почти всюду выполняется автоматически.

Лемма 5. Пусть в односвязной области 𝐷 ⊂ R2, пересечение которой с любой пря-
мой параллельной оси 𝑥2 связно, определена 𝑊 1,2

loc -точная форма θ(𝑧) = θ1(𝑧)𝑑𝑥1 +
+ θ2(𝑧)𝑑𝑥2, такая, что θ2(𝑧) > 0.

Пусть 𝐹 (𝑧) — произвольная первообразная этой формы. Тогда отображение

ξ(𝑧) = 𝑥1 + 𝑖𝐹 (𝑧)

гомеоморфно переводит 𝐷 в некоторую область ξ(𝐷), причем, если

∀𝐷′ b 𝐷 ess sup
𝐷′

1 + |θ(𝑧)|2

θ2(𝑧)
< +∞, (10)

то данный гомеоморфизм локально квазиконформный.
Доказательство. В силу определения первообразной от формы, п.в. в 𝐷, имеем

𝐹𝑥1(𝑥1, 𝑥2) = θ1(𝑧), 𝐹𝑥2(𝑥1, 𝑥2) = θ2(𝑧) > 0.

Отсюда заключаем, что функция 𝐹 (𝑥1, 𝑥2) (строго) монотонно возрастает по 𝑥2 при
п.в. допустимых 𝑥1, т.е. 𝑥1 для которых {(𝑥1, 𝑥2) : 𝑥2 ∈ R} ≠ ∅.

На самом деле, при указанных условиях функция 𝐹 (𝑥1, 𝑥2) монотонно возраста-
ет при всех 𝑥1. Действительно, если имеется отрезок [(𝑥1, 𝑥

′
2), (𝑥1, 𝑥

′′
2)] (𝑥

′
2 < 𝑥′′

2) на
котором 𝐹 (𝑥1, 𝑡) абсолютно непрерывна по 𝑡, то 𝐹 (𝑥1, 𝑥

′
2) < 𝐹 (𝑥1, 𝑥

′′
2), поскольку

𝐹 (𝑥1, 𝑥
′′
2)− 𝐹 (𝑥1, 𝑥

′
2) =

𝑥′′
2∫︁

𝑥′
2

θ2(𝑥1, 𝑡)𝑑𝑡 > 0.

Если имеется отрезок [(𝑥1, 𝑥
′
2), (𝑥1, 𝑥

′′
2)] (𝑥

′
2 < 𝑥′′

2) на котором 𝐹 (𝑥1, 𝑡) не является аб-
солютно непрерывной, то она все же является неубывающей на этом отрезке, т.е. для
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любых 𝑡′ < 𝑡′′, 𝑡′, 𝑡′′ ∈ [𝑥′
1, 𝑥

′′
2] 𝐹 (𝑥1, 𝑡

′) ≤ 𝐹 (𝑥1, 𝑡
′′). Действительно, ввиду непрерывности

𝐹 (𝑧) в 𝐷 и абсолютной непрерывности на произвольных отрезках лежащих на почти
всех прямых параллельных осям координат пересекающих 𝐷 (см., например, [5, Гл. 2,
п. 5] или [15, раздел 3.1]), можно указать последовательность 𝑥

(𝑛)
1 , сходящуюся к 𝑥1 и

такую, что на отрезках [(𝑥
(𝑛)
1 , 𝑡′), (𝑥

(𝑛)
1 , 𝑡′′)] функция 𝐹 (𝑧) будет абсолютно непрерывной,

а значит
𝐹 (𝑥

(𝑛)
1 , 𝑡′) < 𝐹 (𝑥

(𝑛)
1 , 𝑡′′).

После перехода к пределу при 𝑛 → ∞ в последнем неравенстве, получим 𝐹 (𝑥1, 𝑡
′) ≤

≤ 𝐹 (𝑥1, 𝑡
′′). Однако равенство здесь невозможно, поскольку в этом случае функция

𝐹 (𝑥1, 𝑡) будет абсолютно непрерывной на отрезке [𝑡′, 𝑡′′].
Непрерывность, строгая монотонность по 𝑥2 функции 𝐹 (𝑥1, 𝑥2), а также условия

наложенные на область 𝐷 означают гомеоморфность отображения ξ(𝑧). Вычисляя для
данного отображения величину

𝑃 (𝑧) =
1 + |µ(𝑧)|2

1− |µ(𝑧)|2
,

где µ(𝑧) = ξ𝑧
ξ𝑧

— коэффициент Бельтрами, получаем

𝑃 (𝑧) =
1 + |θ#(𝑧)|2

θ2(𝑧)
=

1 + |θ(𝑧)|2

θ2(𝑧)
.

Поскольку, как хорошо известно, первая характеристика Лаврентьева 𝑝(𝑧) (см. [2–4])
почти всюду равна

𝑝(𝑧) =
1 + |µ(𝑧)|
1− |µ(𝑧)|

,

и для нее верна оценка 𝑃 (𝑧) ≤ 𝑝(𝑧) ≤ 2𝑃 (𝑧), то отсюда получаем нужное. Лемма
доказана.

6. Всюду далее через Λqc
𝑥2
(𝐷) (𝐷 ∈ R2 — область) будем обозначать множество 𝑊 1,2

loc -
точных форм θ(𝑧) = θ1(𝑧)𝑑𝑥1 + θ2(𝑧)𝑑𝑥2, θ2(𝑧) > 0, удовлетворяющих условию (10).

Замечание 4. В обозначении Λqc
𝑥2
(𝐷) наличие переменной 𝑥2 указывает на положитель-

ность коэффициента θ2(𝑧) > 0 при 𝑑𝑥2. Аналогично, можно было бы определить класс
Λqc

𝑥1
(𝐷) 1-форм θ(𝑧) = θ1(𝑧)𝑑𝑥1 + θ2(𝑧)𝑑𝑥2, у которых θ1(𝑧) > 0.

4. Основные результаты

Всюду далее символ 𝐷 обозначает область, параболичность типа которой на бес-
конечности устанавливается. При этом предполагается, что она имеет вид 𝐷 = R2 ∖𝐾,
где 𝐾 — односвязный компакт.

Для удобства формулировок введем некоторые обозначения.

1) Через Ω+ будем обозначать множество всевозможных областей вида

{(𝑥1, 𝑥2) : 𝑥2 > 𝑔(𝑥1)}

14 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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не пересекающихся с 𝐾, а через Ω− множество областей вида

{(𝑥1, 𝑥2) : 𝑥2 < −𝑔(𝑥1)},

где 𝑔(𝑥1) ∈ 𝐶(R) не пересекающихся с 𝐾. При этом в обоих случаях предполага-
ется 𝑔(𝑥1) ≥ 0.

2) Для всякой формы ω(𝑧) = ω1(𝑧)𝑑𝑥1 + ω2(𝑧)𝑑𝑥2 и функции λ(𝑧) > 0 определим
квадратичную форму

𝐵λ,ω(𝑧,𝑋) = λ(𝑧)𝑋2
1 − 2ω2(𝑧)𝑋1𝑋2 +ω1(𝑧)𝑋

2
2 .

Для формы θ(𝑧) = θ1(𝑧)𝑑𝑥1+θ2(𝑧)𝑑𝑥2, функций Ψ(𝑋) ∈ 𝒩 (𝐷), Φ(𝑧, 𝑦,𝑋), введем
в рассмотрение следующую величину

𝒱θ,Φ,Ψ = ess sup
𝑥∈R2∖𝐾

sup
𝑦∈R,𝑋:Ψ(𝑋 )̸=0

Φ(𝑧, 𝑦,𝑋𝐽)

θ2(𝑧)Ψ(𝑋)
,

где

𝐽 =

(︂
1 0

θ1(𝑧) θ2(𝑧)

)︂
,

и 𝑋 = (𝑋1, 𝑋2) — вектор-строка.

Сформулируем основные результаты работы.

Теорема 1. Пусть существуют 1-форма θ(𝑧) ∈ Λqc
𝑥2
(𝐷) и локально точная 1-форма

ω(𝑧) = ω1(𝑧)𝑑𝑥1 +ω2(𝑧)𝑑𝑥2, класса 𝐿2,loc(𝐷), ω1(𝑧) > 0.
Предположим также, что имеют место следующие соотношения:
1) для некоторой функции Ψ ∈ 𝒩 (𝐷) выполнено 𝒱θ,Φ,Ψ < ∞,
2)

ess sup
R2∖𝐾

δ2(𝑧) + 1 +ω2
2(𝑧) + θ

2
1(𝑧)

ω1(𝑧)θ2(𝑧)
< +∞, (11)

где δ(𝑧) = ω1(𝑧)θ2(𝑧)−ω2(𝑧)θ1(𝑧).
Тогда область 𝐷 имеет Φ-параболический тип.

Далее * — оператор Ходжа относительно евклидовой метрики в R2, ⟨·, ·⟩ — евкли-
дово скалярное произведение.
Теорема 2. Пусть существуют 1-форма θ(𝑧) ∈ Λqc

𝑥2
(𝐷) и 1-форма ω(𝑧) = ω1(𝑧)𝑑𝑥1 +

+ω2(𝑧)𝑑𝑥2, класса 𝐿2,loc(𝐷), ω1(𝑧) > 0, причем для ω(𝑧) существует слабый диффе-
ренциал 𝑑ω(𝑧) и в некоторой области 𝐷1 ∈ Ω+ выполняется неравенство *𝑑ω(𝑧) ≥
≥ 0, а в некоторой области 𝐷2 ∈ Ω− выполняется неравенство *𝑑ω(𝑧) ≤ 0.

Предположим, что выполняются следующие условия:
1) для некоторой функции Ψ ∈ 𝒩 (𝐷) выполнено 𝒱θ,Φ,Ψ < ∞,
2) может быть определена измеримая функция λ(𝑧) такая что σ(𝑧) = λω1 −

−ω2
2 > 0, причем

ess sup
𝐷𝑖

(︂
1

θ2(𝑧)
+
θ2(𝑧)

σ(𝑧)

)︂(︀
λ(𝑧) +𝐵λ,ω(𝑧, θ

#)
)︀
< +∞.

Тогда 𝐷 имеет Φ-параболический тип.
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Лемма 6. Пусть заданы Ψ(𝑋) ∈ 𝒩 (𝐷), Φ(𝑧, 𝑦,𝑋) ≥ 0 и θ(𝑧) ∈ Λqc
𝑥2
(𝐷). Пусть 𝐷 —

область, 𝑓 ∈ 𝑊 1,2
loc и ξ = 𝑥1 + 𝑖𝐹 (𝑧), где 𝐹 (𝑧) первообразная формы θ(𝑧). Тогда∫︁

𝐷

Φ(𝑧, 𝑓(𝑧),∇𝑓(𝑧))𝑑𝑥1𝑑𝑥2 ≤ 𝒱θ,Φ,Ψ

∫︁
ξ(𝐷)

Ψ(∇ξ𝑓(𝑧(ξ))𝑑ξ1𝑑ξ2. (12)

Замечание 5. Здесь и далее ∇ξ𝑓(𝑧(ξ)) = (𝜕𝑓(𝑧(ξ)
𝜕ξ1

, 𝜕𝑓(𝑧(ξ)
𝜕ξ2

). Интеграл справа понимается
здесь в несобственном смысле (как и интеграл слева, см. раздел 1).

Доказательство. Интегральное неравенство (12) достаточно установить для про-
извольной ограниченной подобласти 𝐷1 b 𝐷. Имеем∫︁

𝐷1

Φ(𝑧, 𝑓(𝑧),∇𝑓(𝑧))𝑑𝑥1𝑑𝑥2 =

∫︁
ξ(𝐷1)

Φ(𝑧(ξ), 𝑓(𝑧(ξ)),∇𝑓(𝑧)|𝑥=𝑧(ξ))|𝐽 |−1𝑑ξ1𝑑ξ2 =

=

∫︁
ξ(𝐷1)

Φ(𝑧(ξ), 𝑓(𝑧(ξ)),∇ξ𝑓(𝑧(ξ))𝐽)
1

θ2(𝑧(ξ))
𝑑ξ1𝑑ξ2 ≤ 𝒱θ,Φ,Ψ

∫︁
ξ(𝐷1)

Ψ(∇ξ𝑓(𝑧(ξ))𝑑ξ1𝑑ξ2.

Замена переменных и применение цепного правила ∇𝑓(𝑧)|𝑥=𝑧(ξ) = ∇ξ𝑓(𝑧(ξ))𝐽 коррект-
ны в силу квазиконформности ξ = ξ(𝑧) (см. [5, Глава 5], [27; 28]). Лемма доказана.

5. Доказательство теоремы 1

Пусть 𝐹 (𝑧) первообразная формы θ(𝑧) и

ξ(𝑧) = ξ1 + 𝑖ξ2 = 𝑥1 + 𝑖𝐹 (𝑧). (13)

В силу лемм 5, 6 достаточно доказать, что это отображение (13) однолистно переводит
окрестность бесконечно удаленной точки плоскости переменных 𝑥1, 𝑥2 на окрестность
бесконечно удаленной точки плоскости переменных ξ1, ξ2, причем так, что бесконеч-
ность переходит в бесконечность.

С учетом строго монотонноного возрастания функции 𝐹 (𝑥1, 𝑥2) по переменной 𝑥2

достаточно показать, что при любом 𝑥1 ∈ (−∞,+∞) выполнено

lim
𝑥2→+∞

𝐹 (𝑥1, 𝑥2) = +∞, (14)

lim
𝑥2→−∞

𝐹 (𝑥1, 𝑥2) = −∞. (15)

Докажем, например, соотношение (14), (15) доказывается аналогично.
Предположим противное, т.е. что (14) при некоторых 𝑥1 не выполняется. Пусть,

например, при 𝑥1 = 𝑥0
1. Зададим 𝑐 > 0, так, чтобы компакт 𝐾 лежал в полуплоскости

{(𝑥1, 𝑥2) : 𝑥2 < 𝑐} и обозначим через Π𝑐 = {(𝑥1, 𝑥2) : 𝑥2 ≥ 𝑐}.
Рассмотрим область Π′

𝑐 = ξ(Π𝑐), очевидно, односвязную. Заметим, что в силу вида
отображения (13) 𝜕Π′

𝑐 = 𝑆 ′⋃︀Γ′, где 𝑆 ′ — график функции ξ2 = 𝐹 (ξ1, 𝑐), а Γ′ —
некоторое непустое множество. О структуре Γ′ информации у нас весьма мало. Ясно

16 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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лишь, что это множество содержит конечную точку (𝑥0
1, lim

𝑥2→+∞
𝐹 (𝑥0

1, 𝑥2)). Ясно, также,

что Π′
𝑐 не содержит точек луча

{(ξ1, ξ2) : ξ1 = 𝑥0
1, ξ2 > lim

𝑥2→+∞
𝐹 (𝑥0

1, 𝑥2)}.

Поэтому Γ′ содержит континуум точек.
Отметим равенства

ξ𝑧 =
1

2
(1 + θ2 + 𝑖θ1), ξ𝑧 =

1

2
(1− θ2 + 𝑖θ1), µξ|𝑧 =

1− θ2 + 𝑖θ1
1 + θ2 + 𝑖θ1

.

Отобразим конформно область Π′
𝑐 на единичный круг 𝐵 = {𝑤 : |𝑤| < 1}. Пусть

𝑤 = 𝑣1+ 𝑖𝑣2 = 𝑤(ξ) — данное отображение. При данном отображении 𝑆 ′ на окружности
|𝑤| = 1 будет соответствовать некоторая дуга, а ее дополнением (соответствующее Γ′)
будет также невырожденная в точку дуга Γ′′.

В полуплоскости Π𝑐 определим первообразную 𝐺(𝑧) формы ω с помощью которой
определим комплекснозначную функцию

𝑢 = 𝑢1 + 𝑖𝑢2 = 𝑥2 − 𝑖𝐺(𝑧).

Нетрудно видеть, отображение 𝑢(𝑧) осуществляет сохраняющий ориентацию гомеомор-
физм Σ𝑐 на 𝑢(Σ𝑐). Вычисляя, имеем

𝑢𝑧 =
1

2
(ω2 − 𝑖+ 𝑖ω1), 𝑢𝑧 =

1

2
(−ω2 + 𝑖+ 𝑖ω1), µ𝑢|𝑧 =

−ω2 + 𝑖+ 𝑖ω1

ω2 − 𝑖+ 𝑖ω1

.

Далее, отметим формулу

µ𝑢|ξ =
µ𝑢|𝑧 − µξ|𝑧
1− µ𝑢|𝑧µξ|𝑧

ξ𝑧

ξ𝑧
.

Отсюда

|µ𝑢|ξ|2 =
(ω1θ2 −ω2θ1 − 1)2 + (−θ1 +ω2)

2

(ω1θ2 −ω2θ1 + 1)2 + (θ1 +ω2)2
=

(δ− 1)2 + (−θ1 +ω2)
2

(δ+ 1)2 + (θ1 +ω2)2
.

Далее, аналогично, имеем

µ𝑢|𝑤 =
µ𝑢|ξ − µ𝑤|ξ

1− µ𝑢|ξµ𝑤|ξ

𝑤ξ
𝑤ξ

= µ𝑢|ξ
𝑤ξ
𝑤ξ

.

Тем самым |µ𝑢|𝑤|2 = |µ𝑢|ξ|2. Отсюда, с учетом (11), почти всюду в круге |𝑤| < 1, имеем

1 + |µ𝑢|𝑤|2

1− |µ𝑢|𝑤|2
=

1 + (δ−1)2+(−θ1+ω2)2

(δ+1)2+(θ1+ω2)2

1− (δ−1)2+(−θ1+ω2)2

(δ+1)2+(θ1+ω2)2

=
(δ+ 1)2 + (θ1 +ω2)

2 + (δ− 1)2 + (−θ1 +ω2)
2

(δ+ 1)2 + (θ1 +ω2)2 − ((δ− 1)2 + (−θ1 +ω2)2)

=
δ2(𝑧) + 1 +ω2

2(𝑧) + θ
2
1(𝑧)

ω1(𝑧)θ2(𝑧)
≤ ess sup

𝑧∈𝐷

δ2(𝑧) + 1 +ω2
2(𝑧) + θ

2
1(𝑧)

ω1(𝑧)θ2(𝑧)
< +∞.

Значит отображение 𝑢 = 𝑢(𝑤) квазиконформно в круге |𝑤| < 1. Функция 𝑓(𝑤) = 1
𝑢(𝑤)

имеет ту же комплексную дилатацию, что и 𝑢(𝑤). C другой стороны, на Γ′′ 𝑓(𝑤) ≡ 0,
что невозможно (противоречие с хорошо известным принципом соответствия границ).
Тем самым соотношение (14) доказано. Следовательно доказана и теорема.
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6. Доказательство теоремы 2

Пусть 𝐹 (𝑧) первообразная формы θ(𝑧) и

ξ(𝑧) = ξ1 + 𝑖ξ2 = 𝑥1 + 𝑖𝐹 (𝑧). (16)

Как и в случае предыдущей теоремы, для доказательства теоремы нужно показать,
что отображение (16) однолистно переводит окрестность бесконечно удаленной точки
плоскости переменных 𝑥1, 𝑥2 на окрестность бесконечно удаленной точки плоскости
переменных ξ1, ξ2, причем так, что бесконечность переходит в бесконечность.

С учетом строго монотонного возрастания функции 𝐹 (𝑥1, 𝑥2) по переменной 𝑥2,
как и в предыдущем случае, достаточно установить, что при любом 𝑥1 ∈ (−∞,+∞)
выполнено

lim
𝑥2→+∞

𝐹 (𝑥1, 𝑥2) = +∞, (17)

lim
𝑥2→−∞

𝐹 (𝑥1, 𝑥2) = −∞. (18)

Докажем, например, соотношение (17), (18) доказывается аналогично.
Предположим противное, т.е. что (17) при некоторых 𝑥1 не выполняется. Пусть,

например, при 𝑥1 = 𝑥0
1.

В 𝐷1 выполняется соотношение *𝑑ω ≥ 0 в слабом смысле, т.е. ∀ϕ(𝑧) ∈ 𝑊 1,2
0 (𝐷1),

ϕ(𝑧) > 0, выполнено неравенство∫︁
𝐷1

(ϕ𝑥2ω1 − ϕ𝑥1ω2)𝑑𝑥1𝑑𝑥2 ≥ 0. (19)

Обозначим через 𝐵λ,ω линейный эллиптический дифференциальный оператор, имеющий
𝐵λ,ω(𝑧,𝑋) своей характеристической формой, т.е. оператор

𝐵λ,ω =
𝜕

𝜕𝑥1

(︂
λ(𝑧)

𝜕

𝜕𝑥1

−ω2(𝑧)
𝜕

𝜕𝑥2

)︂
+

𝜕

𝜕𝑥1

(︂
−ω2(𝑧)

𝜕

𝜕𝑥1

+ω1(𝑧)
𝜕

𝜕𝑥2

)︂
.

Очевидно, условие (19) есть не что иное, как условие 𝐵λ,ω-супергармоничности в 𝐷1 в
слабом смысле функции 𝑓(𝑧) = 𝑥2.

Рассмотрим полуполосу 𝑃 = {(𝑥1, 𝑥2) : |𝑥1 − 𝑥0
1| < 𝑐1, 𝑥2 > 𝑐2}, где 𝑐1 > 0, 𝑐2 > 0

подобраны так, чтобы 𝑃 ⊂ 𝐷1.
Прямой проверкой, с учетом условия 2) теоремы, несложно убедится, что после

замены переменных (16), в области ξ(𝐷1) оператору 𝐵λ,ω будет соответствовать рав-
номерно эллиптический оператор, который обозначим 𝐵̃. При этом 𝑓(𝑧(ξ)) = 𝑥2(ξ) —
будет 𝐵̃-супергармонической функцией в ξ(𝐷1).

Поскольку (17) не выполняется, то 𝜕ξ(𝑃 ) = ξ(𝜕𝑃 )
⋃︀
Γ, где Γ — некоторый конти-

нуум. Так как ξ(𝑃 ) односвязная область, то по теореме Римана ее можно конформно
отобразить на единичный круг 𝐵1.

Пусть 𝑢 : ξ(𝑃 ) → 𝐵1 — данное отображение. При данном отображении оператору
𝐵̃ снова будет соответствовать равномерно эллиптический оператор (см. лемму 3), ко-

торый обозначим через ˜̃𝐵. При этом функция 𝑓(𝑧(ξ(𝑢))) будет ˜̃𝐵-супергармонической в
𝐵1.

18 А.Н. Кондрашов. Некоторые дифференциальные соотношения
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Кроме того, заметим, что граничному множеству Γ при отображении 𝑢 : ξ(𝑃 ) →
→ 𝐵1 будет отвечать невырожденная дуга на 𝜕𝐵1. На этой дуге 𝑓(𝑧(ξ(𝑢))) = +∞,
а на дополняющей дуге данная функция непрерывна, причем стремится к +∞ при
стремлении к концевым точкам. Существование такой функции противоречит лемме 3.
Теорема доказана.

7. Некоторые оценки величины 𝒱θ,Φ,Ψ

1) В случае когда рассматривается квадратичный функционал Φ(𝑧, 𝑦,𝑋) = 𝑎(𝑧,𝑋)
и Ψ(𝑋) = |𝑋|2, имеем оценку

𝒱θ,Φ,Ψ ≤ ess sup
𝐷

𝑎11(𝑧) + 𝑎(𝑧, θ#(𝑧))

θ2(𝑧)
.

Действительно, подставляя

𝑋𝐽 = (𝑋1, 𝑋2)

(︂
1 0

θ1(𝑧) θ2(𝑧)

)︂
= (𝑋1 + θ1𝑋2, θ2𝑋2)

в Φ(𝑧, 𝑦,𝑋𝐽) = 𝑎(𝑧,𝑋𝐽) и используя стандартные факты линейной алгебры, получаем

𝑎(𝑧,𝑋𝐽) = 𝑎11(𝑋1 + θ1𝑋2)
2 + 2𝑎12(𝑋1 + θ1𝑋2)θ2𝑋2+

+𝑎22θ
2
2𝑋

2
2 = 𝑎11𝑋

2
1 + 2(𝑎11θ1 + 𝑎12θ2)𝑋1𝑋2 + 𝑎(𝑧, θ#)𝑋2

2 ≤

≤ Sp

(︂
𝑎11 𝑎11θ1 + 𝑎12θ2

𝑎11θ1 + 𝑎12θ2 𝑎(𝑧, θ#)

)︂
|𝑋|2 = (𝑎11(𝑧) + 𝑎(𝑧, θ#(𝑧)))|𝑋|2.

Отсюда следует нужное.
2) В случае когда рассматривается функционал Ψ(𝑋) = |𝑋|𝑝, аналогичными вы-

кладками можно получить следующую оценку

𝒱θ,Φ,Ψ < ess sup
𝑧∈𝐷

⎛⎝(1 + |θ(𝑧)|2)𝑝/2

θ2(𝑧)
sup
𝑦∈R

𝑌 ∈R2,𝑌 ̸=0

Φ(𝑧, 𝑦, 𝑌 )

|𝑌 |𝑝

⎞⎠ .

8. Следствия теорем

В случае римановой метрики 𝑑𝑠2 =
∑︀2

𝑖,𝑗=1 𝑔𝑖𝑗(𝑧)𝑑𝑥𝑖𝑑𝑥𝑗, заданной в 𝐷 = R2 ∖𝐾 (𝐾
— компакт), известно [9, с. 14], что одним из признаков конформной параболичности
является условие гармоничности координатных функций в данной метрике:

Δ𝑥1 = 0, Δ𝑥2 = 0.

Главным следствием теоремы 2 является следующее обобщение этого результата на
случай квадратичных функционалов.
Следствие 2 (теоремы 2). Пусть в 𝐷 задан линейный эллиптический оператор

B =
2∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝑏𝑖𝑗(𝑧)

𝜕

𝜕𝑥𝑗

)︂
,
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с измеримыми коэффициентами 𝑏𝑖𝑗 = 𝑏𝑗𝑖, причем его характеристическая форма
𝑏(𝑧,𝑋) соизмерима с формой 𝑎(𝑧,𝑋). Предположим, что форма θ(𝑧) = −𝑎12𝑑𝑥1 +
+ 𝑎11𝑑𝑥2 ∈ Λqc

𝑥2
(𝐷) и

ess sup
𝑧∈R2∖𝐾

(δ(𝑧) +
1

δ(𝑧)
) < +∞, (δ(𝑧) = 𝑎22𝑎11 − 𝑎212). (20)

Тогда, если на множестве вида {(𝑥1, 𝑥2) : |𝑥2| > 𝑔(𝑥1)}, где 𝑔(𝑥1) > 0 — некоторая
непрерывная функция, определенная при всех 𝑥1 ∈ R, выполняется в слабом смысле
неравенство

𝑥2B𝑥2 ≤ 0,

то 𝐷 имеет 𝑎-параболический тип в бесконечно бесконечно удаленной точке.
Доказательство. Имеем θ#(𝑧) = (−𝑎12(𝑧), 𝑎11(𝑧)) и

𝑎11 + 𝑎(𝑧, θ#) = 𝑎11 + 𝑎11𝑎
2
12 − 2𝑎212𝑎11 + 𝑎22𝑎

2
11 = 𝑎11 − 𝑎212𝑎11 + 𝑎22𝑎

2
11 = 𝑎11(1 + δ).

C учетом оценки 1) предыдущего пункта и условия (20) получаем нужное.
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28. Malý J. Sufficient conditions for change of variables in integral. Vodop’yanov, S. K.
(ed.), Proceedings on analysis and geometry. International conference in honor of the 70th
birthday of Professor Yu. G. Reshetnyak. Novosibirsk, Russia, August 30-September 3, 1999.
Novosibirsk: Izdatel’stvo Instituta Matematiki Im. S. L. Soboleva SO RAN., 2000, pp. 370-386.

29. Milnor J. On Deciding Whether a Surface Is Parabolic Or Hyperbolic. Amer. Math.
Monthly, 1977, vol. 84, no. 1, pp. 43-46.

30. Yau S.T. Nonlinear Analysis in Geometry. L’Enseignement Mathématique, 1987,
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Abstract.
This paper investigates sufficient conditions for the parabolicity type of the

domain R2 ∖𝐾, where 𝐾 is a compact set, with respect to a general variational
functional 𝐼Φ. A known criterion for the conformal parabolicity of a Riemannian
metric requires that the coordinate functions be harmonic. We significantly gen-
eralize this result by establishing new differential, rather than modul-capacitary,
conditions for Φ-parabolicity at infinity. The work introduces and studies a special
class of differential 1-forms, Λqc

𝑥2
(𝐷), which generate quasiconformal mappings

used to construct appropriate mapping functions. The main results, formulated as
Theorems 1 and 2, provide verifiable criteria involving the interplay between the
functional Φ, a form Ψ of parabolic type, and auxiliary differential forms θ and ω.
These criteria are expressed via the essential boundedness of certain quantities,
such as 𝒱θ,Φ,Ψ, and differential inequalities involving the Hodge operator. The
proofs leverage techniques from quasiconformal mapping theory, potential theory
(including Perron’s method), and the calculus of variations. A key corollary gen-
eralizes the harmonic coordinate condition to the case of quadratic functionals
associated with uniformly elliptic operators in divergence form. The obtained
conditions are shown to be checkable in specific model situations.

Key words: parabolicity type, variational capacity, quasiconformal map-
pings, elliptic operators, Perron’s method.
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