

УДК 524.7-8 ББК 22.193

# ЧИСЛЕННАЯ СХЕМА СЅРН — TVD: ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОГРАНИЧИТЕЛЕЙ НАКЛОНОВ<sup>1</sup>

# Кузьмин Николай Михайлович

Кандидат физико-математических наук, доцент кафедры информационных систем и компьютерного моделирования Волгоградского государственного университета nmkuzmin@gmail.com, infomod@volsu.ru просп. Университетский, 100, 400062 г. Волгоград, Российская Федерация

# Белоусов Антон Владимирович

Студент Института математики и информационных технологий Волгоградского государственного университета anton.belousov@mail.ru, infomod@volsu.ru просп. Университетский, 100, 400062 г. Волгоград, Российская Федерация

## Шушкевич Татьяна Сергеевна

Студент Института математики и информационных технологий Волгоградского государственного университета shushkevich\_tanya@mail.ru, infomod@volsu.ru просп. Университетский, 100, 400062 г. Волгоград, Российская Федерация

# Храпов Сергей Сергеевич

Кандидат физико-математических наук, доцент кафедры информационных систем и компьютерного моделирования Волгоградского государственного университета xss-ip@mail.ru, infomod@volsu.ru просп. Университетский, 100, 400062 г. Волгоград, Российская Федерация

Аннотация. Описано обобщение численной схемы cSPH — TVD для уравнений идеальной газодинамики в отсутствии внешних сил для одномерного случая. Представлены результаты численного решения задачи о распаде газодинамического разрыва с помощью различных вариантов численной схемы. Исследовано влияние ограничителей наклонов и способов вычисления потоков на качество численного решения.

**Ключевые слова:** численные схемы, SPH, TVD, ограничители наклонов, комбинированный лагранжево-эйлеров подход.

## Введение

В работе [7] была предложена новая численная схема cSPH — TVD (combined Smoothed Particle Hydrodynamics — Total Variation Diminishing) для интегрирования уравнений Сен-Венана, описывающих динамику поверхностных вод в приближении мелкой воды на нерегулярном рельефе местности, содержащем изломы и резкие перепады уровней воды. Метод основан на совместном использовании лагранжева (SPH) и эйлерова (TVD) подходов. Алгоритм cSPH — TVD для уравнений Сен-Венана является хорошо сбалансированным, консервативным и позволяет проводить устойчивый расчет нестационарных границ «вода — сухое дно» на существенно неоднородном рельефе дна [3–6; 13].

В работе [1] было предложено обобщение численной схемы cSPH — TVD на случай полной системы уравнений невязкой газодинамики в одномерном приближении для идеального газа в отсутствии внешних сил.

В работе [8] была описана численная схема SPH — PPM, являющаяся обобщением численной схемы cSPH — TVD на случай кусочно-параболического распределения газодинамических параметров внутри эйлеровых ячеек.

Целью данной работы является исследование влияния различных ограничителей наклонов и методов решения задачи Римана на качество численного решения методом cSPH — TVD.

# 1. Основные уравнения

Система уравнений невязкой газодинамики в интегральной форме при отсутствии внешних сил для одномерного случая имеет вид:

$$\begin{cases} \frac{d}{dt} \int_{L(t)} \rho \, dL = 0, \\ \frac{d}{dt} \int_{L(t)} \rho u \, dL = -\int_{L(t)} \frac{\partial p}{\partial x} \, dL, \\ \frac{d}{dt} \int_{L(t)} e \, dL = -\int_{L(t)} \frac{\partial (pu)}{\partial x} \, dL, \end{cases}$$
(1)

где  $\rho$  — плотность; u — скорость; p — давление; e — объемная плотность энергии; t — время; x — пространственная координата; L(t) — размер жидкой частицы; изменяющийся в процессе ее движения. Система уравнений (1) замыкается калорическим уравнением состояния

$$e = \frac{p}{\gamma - 1} + \frac{\rho u^2}{2},\tag{2}$$

где  $\gamma$  — показатель адиабаты.

Для описания численной схемы перепишем систему уравнений (1) в дифференциальном виде:

ISSN 2222-8896. Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ. 2014. № 1 (20)

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0, \\
\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} = -\frac{\partial p}{\partial x}, \\
\frac{\partial e}{\partial t} + \frac{\partial (eu)}{\partial x} = -\frac{\partial (pu)}{\partial x}.
\end{cases}$$
(3)

# 2. Численная схема сSPH — TVD

В расчетной области  $x_{min} \leq x \leq x_{max}$  введем неподвижную эйлерову сетку

$$x_i = x_{min} + \left(i - \frac{1}{2}\right)h, \quad i = 1, 2, \dots, N,$$
(4)

где  $h = (x_{max} - x_{min})/N$ , в центры ячеек которой поместим подвижные лагранжевы жидкие частицы.

## 2.1. Лагранжев этап

На этом этапе вычисляются изменения характеристик подвижных лагранжевых жидких частиц и их координат, обусловленные работой сил давления.

Обозначив средние значения газодинамических величин  $a = (\rho, u, p, e)$  внутри *i*-й ячейки как  $a_i = \frac{1}{h} \int_{L_i(t)} a \, dL$ , перепишем систему уравнений (1) в дискретизированном виде:

$$\frac{d\mathbf{U}_{i}}{dt} = \mathbf{Q}_{i}, \quad \mathbf{U}_{i} = \begin{pmatrix} \rho_{i} \\ (\rho u)_{i} \\ e_{i} \end{pmatrix}, \quad \mathbf{Q}_{i} = -\begin{pmatrix} 0 \\ \varphi_{i} \frac{\partial \varphi}{\partial x_{i}} \\ \frac{\varphi_{i}}{2} \left( u_{i} \frac{\partial \varphi}{\partial x_{i}} + \frac{\partial (\varphi u)}{\partial x_{i}} \right) \end{pmatrix}, \quad (5)$$

где  $\varphi = \sqrt{2p}, \ \frac{\partial a}{\partial x_i} = \left. \frac{\partial a}{\partial x} \right|_{x=x_i}.$ 

Закон движения *i*-й частицы определяется уравнением движения

$$\frac{dx_i}{dt} = u_i. \tag{6}$$

Входящие в (5) пространственные производные будем аппроксимировать на основе модифицированного метода SPH с использованием сглаживающего ядра W [1;7]:

$$\frac{\partial a}{\partial x_i} \approx \sum_{k=i-1}^{i+1} a_i \frac{\partial}{\partial x_i} \overline{W}(|x_i - x_k|, h), \tag{7}$$

где  $\overline{W} = hW$ . В качестве сглаживающего ядра может быть использован кубический сплайн Монагана [16]:

$$W(|x|,h) = A_w \begin{cases} 1 - \frac{3}{2}q^2 + \frac{3}{4}q^3, & 0 \le q \le 1; \\ \frac{1}{4}(2-q)^3, & 1 \le q \le 2; \\ 0, & 2 \le q. \end{cases}$$
(8)

Здесь  $q = \frac{|x|}{h}, A_w = \frac{2}{3h}$ . Из (8) видно, что

$$\frac{\partial W}{\partial x} = \frac{\partial W}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial W}{\partial q} \frac{\operatorname{sign}(x)}{h}.$$
(9)

Подставляя (7) в (5), получим

$$\mathbf{Q}_{i} \approx - \begin{pmatrix} 0 \\ \varphi_{i} \sum_{k} \varphi_{k} \frac{\partial \overline{W}_{ik}}{\partial x_{i}} \\ \frac{\varphi_{i}}{2} \sum_{k} \left[ (u_{i} + u_{k}) \varphi_{k} \frac{\partial \overline{W}_{ik}}{\partial x_{i}} \right] \end{pmatrix}.$$
(10)

С учетом (10) система уравнений (5), (6) сводится к системе обыкновенных дифференциальных уравнений, поэтому для ее численного интегрирования можно использовать методы типа Рунге — Кутты. Приведем метод Рунге — Кутты второго порядка точности, удовлетворяющий TVD-условию [18] для продвижения решения по времени с момента времени  $t_n$  до момента времени  $t_{n+1}$ .

$$\begin{cases} \widetilde{\mathbf{U}}_{i}^{*} = \mathbf{U}_{i}^{n} + \tau \mathbf{Q}_{i}(\mathbf{U}_{k}^{n}, x_{k}^{n}), \\ x_{i}^{*} = x_{i}^{n} + \tau \frac{u_{i}^{n} + \widetilde{u}_{i}^{*}}{2}; \end{cases}$$
(11)

$$\begin{cases} \widetilde{\mathbf{U}}_{i}^{n+1} = \frac{1}{2} \left[ \mathbf{U}_{i}^{n} + \widetilde{\mathbf{U}}_{i}^{*} + \tau \mathbf{Q}_{i} (\widetilde{\mathbf{U}}_{k}^{*}, x_{k}^{*}) \right], \\ x_{i}^{n+1} = \frac{1}{2} \left[ x_{i}^{n} + x_{i}^{*} + \tau \frac{u_{i}^{n} + \widetilde{u}_{i}^{n+1}}{2} \right]. \end{cases}$$
(12)

Здесь знак « » означает, что центр масс соответствующей частицы смещен относительно центра эйлеровой ячейки.

#### 2.2. Эйлеров этап

На этом этапе вычисляются изменения газодинамических величин, обусловленные потоками через границы неподвижных эйлеровых ячеек:

$$\mathbf{U}_{i}^{n+1} = \widetilde{\mathbf{U}}_{i}^{n+1} - \frac{\tau}{h} \bigg( \mathbf{F}_{i+1/2}^{n+1/2} - \mathbf{F}_{i-1/2}^{n+1/2} \bigg),$$
(13)

где

$$\mathbf{F} = \left(\begin{array}{c} \rho u\\ \rho u^2\\ eu \end{array}\right).$$

ISSN 2222-8896. Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ. 2014. № 1 (20)

**25** Ξ

Потоки  $\mathbf{F}_{i+1/2}^{n+1/2}$  можно вычислять используя приближенные решения задачи Римана:

$$\mathbf{F}_{i+1/2}^{n+1/2} = \mathbf{F}(\mathbf{U}_{i+1/2}^L, \mathbf{U}_{i+1/2}^R),$$
(14)

где  $\mathbf{U}_{i+1/2}^L$  и  $\mathbf{U}_{i+1/2}^R$  характеризуют состояния газа слева и справа от границы между i-й и (i+1)-й ячейками.

Будем считать, что внутри эйлеровых ячеек газодинамические параметры имеют кусочно-линейное распределение. Тогда, проводя интерполяцию относительно центра масс ячейки, сместившегося на лагранжевом этапе за счет работы сил давления, получим:

$$\begin{cases} \mathbf{U}_{i+1/2}^{L} = \widetilde{\mathbf{U}}_{i}^{n+1/2} + \frac{h}{2} \left( 1 - \bar{\xi}_{i}^{n+1} \right) \boldsymbol{\Theta}_{i}^{n+1/2}, \\ \mathbf{U}_{i+1/2}^{R} = \widetilde{\mathbf{U}}_{i+1}^{n+1/2} - \frac{h}{2} \left( 1 + \bar{\xi}_{i+1}^{n+1} \right) \boldsymbol{\Theta}_{i+1}^{n+1/2}, \end{cases}$$
(15)

где  $\Theta_i^{n+1/2}$  — вектор наклонов линейного распределения величины  $\widetilde{\mathbf{U}}_i^{n+1/2} = (\mathbf{U}_i^n + \widetilde{\mathbf{U}}_i^{n+1})/2$  внутри *i*-й ячейки и

$$\bar{\xi}_i^{n+1} = \frac{\xi_i^{n+1}}{h}, \quad \xi_i^{n+1} = x_i^{n+1} - x_i^n.$$

Для того чтобы наклоны кусочно-линейного распределения (15) удовлетворяли условию TVD [11], их ограничители:

$$\Theta_i^{n+1/2} = \mathcal{L}\left(\frac{\widetilde{\mathbf{U}}_{i+1}^{n+1/2} - \widetilde{\mathbf{U}}_i^{n+1/2}}{\kappa_i h}, \frac{\widetilde{\mathbf{U}}_i^{n+1/2} - \widetilde{\mathbf{U}}_{i-1}^{n+1/2}}{\kappa_{i-1} h}\right),\tag{16}$$

где  $\kappa_i = 1 + ar{\xi}_{i+1}^{n+1/2} - ar{\xi}_i^{n+1/2}, \ \xi_i^{n+1/2} = \xi_i^{n+1}/2.$ 

#### 2.3. Заключительный этап

На этом этапе подвижные лагранжевы частицы возвращаются в центры неподвижных эйлеровых ячеек. Это означает, что после вычисления  $\mathbf{U}_i^{n+1}$  во всех ячейках расчетной области, перед выполнением следующего шага по времени, должно быть сделано присваивание

$$x_i^{n+1} = x_i^0, i = 1, 2, \dots, N_i$$

где  $x_i^0$  — координаты центров масс ячеек в начальный момент времени  $t_0$ .

#### 2.4. Шаг по времени

Временной шаг т должен определяться из соотношения [1]

$$\tau = \operatorname{CFL}\min_{i} \left( \frac{h}{2\max_{i} |u_{i}^{n}|}, \frac{h}{\max_{i}(|u_{i}^{n}| + c_{i}^{n})} \right),$$
(17)

26 Н.М. Кузьмин, А.В. Белоусов, Т.С. Шушкевич, С.С. Храпов. Численная схема cSPH — TVD

где  $0 < CFL < 1 - число Куранта - Фридрихса - Леви, <math>c_i^n = \sqrt{\gamma p_i^n / \rho_i^n}$  - адиабатическая скорость звука. Уравнение (17) гарантирует, что за один временной шаг на лагранжевом этапе центр масс частиц не сместится на расстояние, превышающее h/2 относительно начального положения, а на эйлеровом этапе возмущения не распространятся на расстояние, большее размера ячейки h.

#### 3. Различные реализации численной схемы

Для численной схемы, описанной в разделе 2, возможен выбор различных способов приближенного решения задачи Римана и ограничения наклонов. Опишем некоторые из них.

# 3.1. Приближенные решения задачи Римана

Обозначим  $\mathbf{U}^{L,R} = \mathbf{U}_{i+1/2}^{L,R}$ ,  $\mathbf{F}^{L,R} = \mathbf{F}(\mathbf{U}^{L,R})$ , тогда метод Лакса — Фридрихса [14] (LF) может быть записан в виде

$$\mathbf{F}_{i+1/2}^{n+1/2} = \frac{\mathbf{F}^L + \mathbf{F}^R}{2} + S^* \frac{\mathbf{U}^L - \mathbf{U}^R}{2},$$
(18)

где  $S^* = \max(|S^L|, |S^R|)$  и

$$S^{L} = \min(u^{L} - c^{L}, u^{R} - c^{R}), \quad S^{R} = \max(u^{L} + c^{L}, u^{R} + c^{R}), \quad c^{L,R} = \sqrt{\gamma p^{L,R} / \rho^{L,R}}.$$

Метод Хартена — Лакса — ван Лира [12] (HLL) может быть записан в виде

$$\mathbf{F}_{i+1/2}^{n+1/2} = \begin{cases} \mathbf{F}^{L}, & 0 < S^{L}, \\ \frac{S^{R}\mathbf{F}^{L} - S^{L}\mathbf{F}^{R} + S^{L}S^{R}(\mathbf{U}^{L} - \mathbf{U}^{R})}{S^{R} - S^{L}}, & S^{L} \leq 0 \leq S^{R}, \\ \mathbf{F}^{R}, & S^{R} < 0. \end{cases}$$
(19)

#### 3.2. Ограничители наклонов

Одно из первых применений ограничителей описано в [2], где использовалась функция

$$\mathcal{L}_{Kolgan}(a,b) = \begin{cases} a, & |a| = \min(|a|, |b|, \frac{1}{2}|a+b|); \\ b, & |b| = \min(|a|, |b|, \frac{1}{2}|a+b|); \\ \frac{1}{2}(a+b), & |a| = \min(|a|, |b|, \frac{1}{2}|a+b|). \end{cases}$$
(20)

Для описания различных видов ограничителей наклонов часто используется функция

$$\operatorname{minmod}(a,b) = \frac{1}{2}[\operatorname{sign}(a) + \operatorname{sign}(b)]\min(|a|,|b|).$$
(21)

Запишем ее для общего случая *n* аргументов:

 $\min(a_1, a_2, \dots, a_n) = \operatorname{sign}(a_1) \max[0, \min(|a_1|, \operatorname{sign}(a_1)a_2, \dots, \operatorname{sign}(a_1)a_n)].$ (22)

ISSN 2222-8896. Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ. 2014. № 1 (20)

27

Эта функция является простейшим ограничителем наклонов, гарантирующим выполнение условия TVD и монотонности численной схемы:

$$\mathcal{L}_{mm}(a,b) = \operatorname{minmod}(a,b).$$
(23)

Другим примером является предложенный в [15] ограничитель

$$\mathcal{L}_{vL}(a,b) = \begin{cases} \frac{2ab}{a+b}, & ab > 0; \\ 0, & ab \le 0. \end{cases}$$
(24)

В работе [9] был предложен гладкий ограничитель

$$\mathcal{L}_{vA}(a,b) = \frac{(a^2 + \epsilon)b + (b^2 + \epsilon)a}{a^2 + b^2 + 2\epsilon},$$
(25)

где  $\epsilon \ll 1-$  малая положительная константа, добавляемая во избежание деления на ноль.

Выпишем однопараметрическое семейство ограничителей

$$\mathcal{L}_k(a,b) = \frac{1}{2}[\operatorname{sign}(a) + \operatorname{sign}(b)] \max(|\operatorname{minmod}(ka,b)|, |\operatorname{minmod}(a,kb)|), \quad (26)$$

где  $1 \le k \le 2$ . При k = 1 этот ограничитель тождественен ограничителю minmod, а при k = 2 — ограничителю «superbee» [17].

Приведем ограничитель из работы [10], соответствующий кусочно-параболическому распределению параметров внутри ячейки:

$$\mathcal{L}_{CW}(a,b) = \operatorname{minmod}\left(2a, 2b, \frac{a+b}{2}\right).$$
(27)

#### 4. Тестирование

Условимся об обозначениях для различных вариантов схемы cSPH — TVD: оно будет состоять из двух частей, разделенных дефисом. При этом первая часть будет обозначать метод, применяемый для приближенного решения Задачи Римана, а вторая — ограничитель наклонов. Например, схема, написанная с использованием формул (18) и (23), будет обозначаться как «LF-mm».

В качестве тестовой рассмотрим задачу о распаде разрыва газа с показателем адиабаты  $\gamma = 1.4$  в точке  $x_0 = 0.3$  с начальными условиями

$$(\rho, u, p) = \begin{cases} (1, 0.75, 1), & x < x_0, \\ (0.125, 0, 0.1), & x_0 \le x. \end{cases}$$
(28)

Все вычисления проводились на сетке с количеством ячеек N = 100, число Куранта — Фридрихса — Леви CFL = 0.5. На рисунках 1, 2 приведены результаты тестирования для некоторых вариантов схемы (для схем LF-k и HLL-k параметр k = 2).

Для каждого из вариантов схемы была рассчитана относительная ошибка в норме  $L_1$ :

$$\varepsilon = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\rho_n - \rho_e}{\rho_e} \right| \times 100 \%, \tag{29}$$

где  $\rho_e$  — аналитическое решение;  $\rho_n$  — численное. Результаты представлены в таблицах 1, 2.



Рис. 1. Результаты тестирования с использованием методов LF-mm (a), LF-vL (б), LF-k (в) и LF-CW (г) для момента времени *t* = 0.2. Сплошной линией показано аналитическое решение для профиля плотности, крестиками — численное

Таблица 1

Относительные ошибки для LF-вариантов схемы

| Схема  | LF-mm | LF-vL | LF-vA | LF-Kolgan | LF-k | LF-CW |
|--------|-------|-------|-------|-----------|------|-------|
| Ошибка | 3,10  | 2,52  | 2,69  | 3,09      | 2,79 | 2,52  |

Таблица 2

Относительные ошибки для HLL-вариантов схемы

| Схема  | HLL-mm | HLL-vL | HLL-vA | HLL-Kolgan | HLL-k | HLL-CW |
|--------|--------|--------|--------|------------|-------|--------|
| Ошибка | 2,50   | 2,10   | 2,26   | 2,51       | 1,76  | 2,01   |

## Заключение

Две пары ограничителей наклонов —  $\mathcal{L}_{mm}$ ,  $\mathcal{L}_{Kolgan}$  и  $\mathcal{L}_{vL}$ ,  $\mathcal{L}_{CW}$  приводят к похожим результатам для обоих методов численного решения задачи Римана: LF и HLL.

Ограничитель  $\mathcal{L}_{CW}$  привел к наилучшему согласию численного решения с аналитическим для метода LF, а  $\mathcal{L}_{mm}$  — к наихудшему. Ограничитель  $\mathcal{L}_k$  привел к наилучшему согласию численного решения с аналитическим для метода HLL, а  $\mathcal{L}_{Kolgan}$  — к наихудшему.



Рис. 2. Результаты тестирования с использованием методов HLL-mm (a), HLL-vL (б), HLL-k (в) и HLL-CW (г) для момента времени t = 0.2. Сплошной линией показано аналитическое решение для профиля плотности, крестиками — численное

Относительная ошибка для профиля плотности в норме  $L_1$  находится в пределах от 1.76 % до 3.1 % в зависимости от метода вычисления численных потоков и используемого в вычислениях ограничителя наклонов. Таким образом, все варианты cSPH — TVD схемы показывают хорошее согласие численного решения с аналитическим.

Отметим, что метод LF-k приводит к особенностям в профиле плотности перед контактным разрывом и перед волной разрежения. При этом метод HLL-k свободен от указанного недостатка и показал наилучшее согласие численного решения с аналитическим.

#### ПРИМЕЧАНИЕ

<sup>1</sup> Работа выполнена при поддержке грантов РФФИ № 13-07-97056-р\_поволжье\_а, № 13-01-97062-р\_поволжье\_а, № 13-05-97065-р\_поволжье\_а и Гостемы № 8.2419.2011.

#### СПИСОК ЛИТЕРАТУРЫ

1. Жумалиев, А. Г. Численная схема сSPH — TVD: моделирование фронта ударной волны / А. Г. Жумалиев, С. С. Храпов // Вестник Волгоградского государственного университета. Серия 1, Математика. Физика. — 2012. — № 2 (17). — С. 60–67.

**30** Н.М. Кузьмин, А.В. Белоусов, Т.С. Шушкевич, С.С. Храпов. Численная схема cSPH — TVD

2. Колган, В. П. Применение принципа минимальных значений производных к построению конечно-разностных схем для расчета разрывных решений газовой динамики / В. П. Колган // Ученые записки ЦАГИ. — 1972. — Т. 3, № 6. — С. 68–77.

3. Писарев, А. В. Численная модель динамики поверхностных вод в русле Волги: оценка коэффициента шероховатости / А. В. Писарев, С. С. Храпов, Е. О. Агафонникова, А. В. Хоперсков // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. — 2013. — № 1. — С. 114–130.

4. Писарев, А. В. Численная схема на основе комбинированного подхода SPH — TVD: проблема моделирования сдвиговых течений / А. В. Писарев, С. С. Храпов, А. В. Хоперсков // Вестник Волгоградского государственного университета. Серия 1, Математика. Физика. — 2011. — № 2 (15). — С. 138–141.

5. Хоперсков, А. В. Задача управления гидрологическим режимом в экологоэкономической системе «Волжская ГЭС — Волго-Ахтубинская пойма». Ч. 1. Моделирование динамики поверхностных вод в период весеннего паводка / А. В. Хоперсков, С. С. Храпов, А. В. Писарев, А. А. Воронин, М. В. Елисеева, И. А. Кобелев // Проблемы управления. — 2012. — № 5. — С. 18–25.

6. Храпов, С. С. Моделирование динамики поверхностных вод / С. С. Храпов, А. В. Хоперсков, М. А. Еремин. — Волгоград : Изд-во ВолГУ, 2010. — 132 с.

7. Храпов, С. С. Численная схема для моделирования динамики поверхностных вод на основе комбинированного SPH — TVD подхода / С. С. Храпов, А. В. Хоперсков, Н. М. Кузьмин, А. В. Писарев, И. А. Кобелев // Вычислительные методы и программирование: новые вычислительные технологии. — 2011. — Т. 12, № 1. — С. 282–297.

8. Шушкевич, К. С. Одномерная численная схема для газодинамического моделирования на основе комбинированного подхода SPH — PPM / К. С. Шушкевич, Н. М. Кузьмин // Вестник магистратуры. — 2013. — № 5 (20). — С. 40-44.

9. Albada, G. D. van. A comparative study of computational methods to cosmic gas dynamics / G. D. van Albada, B. van Leer, W. W. Roberts // Astronomy and Astrophysics. -1982. - Vol. 108. - P. 76–84.

10. Colella, P. The piecewise parabolic method (PPM) for gas-dynamical simulations / P. Colella, P. R. Woodward // Journal of Comutational Physics. -1984. - Vol. 54, N 1. - P. 174-201.

11. Harten, A. High resolution schemes for hyperbolic conservation laws / A. Harten // Journal of Computational Physics. – 1983. – Vol. 49, № 3. – P. 357–393.

12. Harten, A. On upstream differencing and Godunov type methods for hyperbolic conservation laws / A. Harten, P. Lax, B. van Leer // SIAM Review. -1983. - Vol. 25, N 1. - P. 35-61.

13. Khrapov, S. S. The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage / S. S. Khrapov, A. V. Pisarev, I. A. Kobelev, A. G. Zhumaliev, E. O. Agafonnikova, A. G. Losev, A. V. Khoperskov // Advances in Mechanical Engineering. – 2013. – Vol. 2013. – P. 1–11. – Electronic text data. – Mode of access: Article ID 787016, http://dx.doi.org/10.1155/2013/787016. – Title from screen.

14. Lax, P. D. Weak solutions of nonlinear hyperbolic equations and their numerical computation / P. D. Lax // Communications on Pure and Applied Mathematics. -1954. - Vol. 7, N 1. - P. 159-193.

15. Leer, B. van. Towards the ultimative conservative difference scheme. III. Upst-ream-centered finite-difference schemes for ideal compressible flow / B. van Leer // Journal of Computational Physics. -1977. - Vol. 23,  $N_{2}$  3. - P. 263–275.

16. Monaghan, J. J. Smoothed particle hydrodynamics / J. J. Monaghan // Annual Review of Astronomy and Astrophysics. - 1992. - Vol. 30. - P. 543-574.

17. Roe, P. L. Efficient construction and use of approximate Riemann solvers / P. L. Roe, J. Pike // Computing Methods in Applied Sciences and Engineering, VI. — Amsterdam : North-Holland, 1983. — P. 499–518.

18. Shu, C. W. Efficient implementation of essentially non-oscillatory shock-capturing

schemes. I / C. W. Shu, S. Osher // Journal of Computational Physics. - 1988. - Vol. 77, № 2. - P. 439-471.

#### **REFERENCES**

1. Zhumaliev A.G., Khrapov S.S. Chislennaya skhema cSPH — TVD: modelirovanie fronta udarnoy volny [Numerical scheme cSPH — TVD: front of shock wave simulation]. *Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1, Matematika. Fizika* [Journal of Volgograd State University, series 1, Mathematics. Physics], 2012, no. 2 (17), pp. 60–67.

2. Kolgan V.P. Primenenie printsipa minimal'nykh znacheniy proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh resheniy gazovoy dinamiki [The application of derivatives' minimum values to construction finite-difference schemes for computation of gas dynamics' discontinuous solutions]. *Uchenye zapiski TsAGI* [Science notes of CAHI], 1972, vol. 3, no. 6, pp. 68–77.

3. Pisarev A.V., Khrapov S.S., Agafonnikova E.O., Khoperskov A.V. Chislennaya model' dinamiki poverkhnostnykh vod v rusle Volgi: otsenka koeffitsienta sherokhovatosti [Numerical model of surface water dynamics in Volgas bed: estimation of roughness coefficient]. *Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki* [Journal of Udmurt university. Mathematics. Mechanics. Computer science], 2013, no. 1, pp. 114–130.

4. Pisarev A.V., Khrapov S.S., Khoperskov A.V. Chislennaya skhema na osnove kombinirovannogo podkhoda SPH — TVD: problema modelirovaniya sdvigovykh techeniy [Numerical scheme on the base of combined SPH — TVD approach: the problem of shear flows simulation]. *Vestnik Volgogradskogo gosudarstvennogo universiteta*. *Seriya 1, Matematika. Fizika* [Journal of Volgograd State University, series 1, Mathematics. Physics], 2011, no. 2 (15), pp. 138–141.

5. Khoperskov A.V., Khrapov S.S., Pisarev A.V., Voronin A.A., Eliseeva M.V., Kobelev I.A. Zadacha upravleniya gidrologicheskim rezhimom v ekologo-ekonomicheskoy sisteme «Volzhskaya GES – Volgo-Akhtubinskaya poyma». Ch. 1. Modelirovanie dinamiki poverkhnostnykh vod v period vesennego pavodka [The problem of management hydrological regime in ecology-economic system "Volga HPS – Volga-Akhtuba flood-plain". Part 1. Simulation of surface water dynamics in springtime flood]. *Problemy upravleniya* [Problems of management], 2012, no. 5, pp. 18–25.

6. Khrapov S.S., Khoperskov A.V., Eremin M.A. *Modelirovanie dinamiki poverkhnostnykh vod* [Simulation of surface water dynamics]. Volgograd, Izd-vo VolGU Publ., 2010. 132 p.

7. Khrapov S.S., Khoperskov A.V., Kuz'min N.M., Pisarev A.V., Kobelev I.A. Chislennaya skhema dlya modelirovaniya dinamiki poverkhnostnykh vod na osnove kombinirovannogo SPH – TVD podkhoda [Numerical scheme for simulation of dynamics surface waters on the base of combined SPH – TVD approach]. *Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii* [Numerical methods and programming], 2011, vol. 12, no. 1, pp. 282–297.

8. Shushkevich K.S., Kuz'min N.M. Odnomernaya chislennaya skhema dlya gazodinamicheskogo modelirovaniya na osnove kombinirovannogo podkhoda SPH – PPM [One-dimensional numerical scheme for gas-dynamics simulation on the base of combined SPH – PPM approach]. *Vestnik magistratury* [Masters journal], 2013, no. 5 (20), pp. 40–44.

9. Albada G.D. van., Leer V. van, Roberts W.W. A comparative study of computational methods to cosmic gas dynamics. *Astronomy and Astrophysics*, 1982, vol. 108, pp. 76–84.

10. Colella P., Woodward P.R. The piecewise parabolic method (PPM) for gas-dynamical simulations. *Journal of Comutational Physics*, 1984, vol. 54, no. 1, pp. 174–201.

11. Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 1983, vol. 49, no. 3, pp. 357-393.

12. Harten A., Lax P., Leer B. van. On upstream differencing and Godunov type methods for hyperbolic conservation laws. *SIAM Review*, 1983, vol. 25, no. 1, pp. 35–61.

13. Khrapov S.S., Pisarev A.V., Kobelev I.A., Zhumaliev A.G., Agafonnikova E.O., Losev A.G., Khoperskov A.V. The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage. *Advances in Mechanical Engineering*, 2013, vol. 2013, pp. 1–11. Available at: Article ID 787016, http://dx.doi.org/10.1155/2013/787016.

14. Lax P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. *Communications on Pure and Applied Mathematics*, 1954, vol. 7, no. 1, pp. 159–193.

15. Leer V. van. Towards the ultimative conservative difference scheme. III. Upstreamcentered finite-difference schemes for ideal compressible flow. *Journal of Computational Physics*, 1977, vol. 23, no. 3, pp. 263–275.

16. Monaghan J.J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, vol. 30, pp. 543–574.

17. Roe P.L., Pike J. Efficient construction and use of approximate Riemann solvers. *Computing Methods in Applied Sciences and Engineering, VI*, Amsterdam, North-Holland, 1983, pp. 499–518.

18. Shu C.W., Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. I. *Journal of Computational Physics*, 1988, vol. 77, no. 2, pp. 439–471.

# NUMERICAL SCHEME CSPH — TVD: INVESTIGATION OF INFLUENCE SLOPE LIMITERS

#### Kuz'min Nikolay Mikhaylovich

Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Information Systems and Computer Simulation Volgograd State University nmkuzmin@gmail.com, infomod@volsu.ru Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

# **Belousov Anton Vladimirovich**

Student, Institute of Mathematics and IT Volgograd State University anton.belousov@mail.ru, infomod@volsu.ru Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

#### Shushkevich Tat'yana Sergeevna

Student, Institute of Mathematics and IT Volgograd State University shushkevich\_tanya@mail.ru, infomod@volsu.ru Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

#### **Khrapov Sergey Sergeevich**

Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Information Systems and Computer Simulation Volgograd State University xss-ip@mail.ru, infomod@volsu.ru Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

**Abstract.** The generalisation of combined lagrange-eulerian numerical scheme cSPH - TVD for ideal gas-dynamics equations without extarnal forces in one-dimensional case was described. The results of the Riemann problems numerical simulation for different variants of this numerical scheme are shown.

Influence of slope-limitiers and flux computation methods to quality of numerical solution are investigated.

Six version of slope limiters are investigated: minmod, van Leer, van Albada, Kolgan, k-parameter and Colella — Woodward. Two methods of numerical flux computation also investigated: Lax — Friedrichs and Harten — Lax — van Leer.

It is shown, that two pair of slope limiters leads to very similar numerical solution quality: minmod — Kolgan and van Leer — Colella — Woodward for the both version of numerical flux computation — Lax — Friedrichs and Harten — Lax — van Leer methods.

For the Lax — Friedrichs method of numerical flux computation Colella– Woodward slope limiter give the best results and minmod the worse.

For the Harten - Lax - van Leer method of numerical flux computation k-parameter slope limiter give the best results and Kolgan the worse.

The  $L_1$  relative error in density varying from 1.76% to 3.1% depending on the numerical flux computation method and kind of slope limiter.

It is shown, that for all investigated variants of cSPH - TVD method numerical solution of Riemann problem very similar to exact.

It is very interesting, that k-parameter slope limiter in combination with Lax - Friedrichs method of numerical flux computation leads to strange features near to contact discontinuity and rarefaction wave. But, in combination with Harten -Lax - van Leer method of numerical flux computation it leads to the best of all results without these strange features.

**Key words:** numerical schemes, SPH, TVD, slope limiters, combined lagrange-eulerian approach.