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Abstract. In 1963, Ahlfors posed in [1] (and repeated in his book [2]) the
following question which gave rise to various investigations of quasiconformal
extendibility of univalent functions.

Question. Let 𝑓 be a conformal map of the disk (or half-plane) onto
a domain with quasiconformal boundary (quasicircle). How can this map be
characterized?

He conjectured that the characterization should be in analytic properties of
the logarithmic derivative log 𝑓 ′ = 𝑓 ′′/𝑓 ′, and indeed, many results on quasicon-
formal extensions of holomorphic maps have been established using 𝑓 ′′/𝑓 ′ and
other invariants (see, e.g., the survey [9] and the references there).

This question relates to another still not solved problem in geometric com-
plex analysis:

To what extent does the Riemann mapping function 𝑓 of a Jordan domain
𝐷 ⊂ ̂︀C determine the geometric and conformal invariants (characteristics) of
complementary domain 𝐷* = ̂︀C ∖𝐷?

The purpose of this paper is to provide a qualitative answer to these ques-
tions, which discovers how the inner features of biholomorphy determine the
admissible bounds for quasiconformal dilatations and determine the Kobayashi
distance for the corresponding points in the universal Teichmüller space.

Key words: the Grunsky inequalities, Beltrami coefficient, universal Te-
ichmüller space, Teichmüller metric, Kobayashi metric, Schwarzian derivative,
Fredholm eigenvalues.
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1. Background

The underlying features are created by the Grunsky inequalities (cf. [10]). Recall that
the Grunsky coefficients 𝛼𝑚𝑛(𝑓) of a univalent function 𝑓 in the unit disk Δ = {|𝑧| < 1}
with 𝑓(0) = 0, 𝑓 ′(0) = 1 are determined from the expansion

log
𝑓(𝑧)− 𝑓(𝜁)

𝑧 − 𝜁
=

∞∑︁
𝑚,𝑛=1

𝛼𝑚𝑛𝑧
𝑚𝜁𝑛 (𝑧, 𝜁 ∈ Δ2)
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(where the principal branch of the logarithmic function is chosen) and satisfy the inequality⃒⃒⃒ ∞∑︁
𝑚,𝑛=1

√
𝑚𝑛 𝛼𝑚𝑛(𝑓)𝑥𝑚𝑥𝑛

⃒⃒⃒
≤ 1 (1)

for any sequence x = (𝑥𝑛) from the unit sphere 𝑆(𝑙2) of the Hilbert space 𝑙2 with norm

‖x‖ =
(︀∞∑︀

1
|𝑥𝑛|2

)︀1/2
(cf. [5]).

We shall consider with the functions with quasiconformal extensions across the unit
circle 𝜕Δ. Their Beltrami coefficients run over the unit ball

Belt(Δ*)1 = {𝜇 ∈ 𝐿∞(𝐶) : 𝜇(𝑧)|𝐷 = 0, ‖𝜇‖∞. < 1}

Denote by 𝑤𝜇 the solution of the Beltrami equation 𝜕𝑤 = 𝜇𝜕𝑤 on C normalized by

𝑤𝜇(𝑧) = 𝑧 +
∞∑︁
2

𝑎𝑛𝑧
𝑛, 𝑧 ∈ Δ; 𝑤𝜇(∞) = ∞.

Such functions form the class 𝑆(∞); it is foliated by the equivalence classes [𝑓 ] = {𝑤𝜇 :
: 𝑤𝜇|Δ = 𝑓}. We shall also write 𝜇 ∈ [𝑓 ].

Note that Beltrami equation with 𝜇 ∈ Belt(Δ*)1 determines its solutions with 𝑤(0) =
= 𝑤′(0)− 1 = 0 up to the fractional linear transformation

𝜎𝑎 : 𝑤 ↦→ 𝑤/(1− 𝑎𝑤) (2)

depending on 𝑎 = 1/𝑤(∞), and 𝜎𝑎 ∘ 𝑤 ∈ 𝑆(∞).
The minimum 𝑘(𝑓) of dilatations 𝑘(𝑤𝜇) = ‖𝜇‖∞ in the equivalence class of 𝑓 is called

the Teichmüller norm of this function. It dominates the Grunsky norm

κ(𝑓) = sup
{︁⃒⃒⃒ ∞∑︁

𝑚,𝑛=1

√
𝑚𝑛 𝛼𝑚𝑛𝑥𝑚𝑥𝑛

⃒⃒⃒
: x = (𝑥𝑛) ∈ 𝑆(𝑙2)

}︁
by κ(𝑓) ≤ 𝑘(𝑓) [12] (or even a stronger form found recently in [9], but this will not be
used here).

These norms coincide only when any extremal Beltrami coefficient 𝜇0 for 𝑓 satisfies

‖𝜇0‖∞ = sup
{︁⃒⃒⃒ ∫︁∫︁

𝐷*
𝜇(𝑧)𝜓(𝑧)𝑑𝑥𝑑𝑦

⃒⃒⃒}︁
: 𝜓 ∈ 𝐴2

1(Δ
*), ‖𝜓‖𝐴1 = 1} (𝑧 = 𝑥+ 𝑖𝑦), (3)

where 𝐴1(Δ
*) denotes the subspace in 𝐿1(Δ

*) formed by holomorphic functions (hence,
𝜓(𝑧) = 𝑐4𝑧

−4 + 𝑐5𝑧
−5 + · · · = 𝑂(𝑧−4) as 𝑧 → ∞) and 𝐴2

1(Δ
*) is its subset consisting

of 𝜓 with zeros even order in Δ, i.e., of the squares of holomorphic functions. Moreover,
if κ(𝑓) = 𝑘(𝑓) and the equivalence class of 𝑓 is a Strebel point (i.e., contains extremal
extension of Teichmüller type 𝑓𝑘|𝜓0|/𝜓0), then 𝜓0 = 𝜔2 ∈ 𝐴2

1 (cf. [6; 9]). In the case,
when the curve 𝑓(𝑆1) is analytic, the evenness of zeros of 𝜓0 was established by a different
method in [14].

One can apply to 𝑓 ∈ 𝑆(∞) the rotational conjugation

ℛ𝑝 : 𝑓(𝑧) ↦→ 𝑓𝑝(𝑧) := 𝑓(𝑧𝑝)1/𝑝 = 𝑧 +
𝑎2
𝑝
𝑧𝑝−1 + . . .
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with integer 𝑝 ≥ 2 which transforms 𝑓 ∈ 𝑆(∞) into 𝑝-symmetric univalent functions
accordingly to the commutative diagram

̃︁C𝑝 ℛ𝑝𝑓−−−→ ̃︁C𝑝
𝜋𝑝

⎮⎮⌄ ⎮⎮⌄𝜋𝑝
̂︀C 𝑓−−−→ ̂︀C

where ̃︁C𝑝 denotes the 𝑝-sheeted sphere ̂︀C branched over 0 and ∞, and the projection 𝜋𝑝(𝑧) =
= 𝑧𝑝. This transform acts on 𝜇 ∈ Belt(Δ*)1 and 𝜓 ∈ 𝐿1(Δ

*) by

ℛ*
𝑝𝜇 = 𝜇(𝑧𝑝)𝑧𝑝−1/𝑧𝑝−1, ℛ*

𝑝𝜓 = 𝜓(𝑧−𝑝)𝑝2𝑧2𝑝−2, (4)

and 𝑘(ℛ𝑝𝑓) = 𝑘(𝑓), κ(ℛ𝑝𝑓) ≥ κ(𝑓).

2. Theorem

Fix 0 < 𝑟 < 1 and consider for 𝜇 ∈ Belt(Δ*)1 the maps

𝑓 ̃︀𝜇
𝑟 (𝑧) = 𝑟−1𝑓𝜇(𝑟𝑧), 𝑧 ∈ C

with Beltrami coefficients ̃︀𝜇(𝑧) = 𝜇(𝑟𝑧). Take the truncated Beltrami coefficients

𝜇𝑟(𝑧) =

{︃
𝜇(𝑟𝑧), |𝑧| > 1,

0, |𝑧| < 1,
(5)

getting a linear (hence holomorphic) map

𝜄𝑟 : 𝜇 ↦→ 𝜇𝑟 : Belt(Δ*)1 → Belt(Δ)1. (6)

Theorem 1. For any univalent function 𝑓(𝑧) = 𝑧 + 𝑐2𝑧
2 + . . . in the unit disk Δ, the

following assertions are equivalent:
(a) 𝑓 has quasiconformal extension across the unit circle 𝑆1 = 𝜕Δ (hence, 𝑓(𝑆1) is a

quasicircle).
(b) κ(𝑓) < 1.
(c) 𝑓 admits 𝑘-quasiconformal extensions across the unit circle 𝑆1 to ̂︀C with

𝑘 ≥ ̂︀κ(𝜎𝑎 ∘ 𝑓) := sup
𝜇∈[𝜎𝑎∘𝑓 ]

lim sup
𝑟→1

sup
𝑝

sup
𝜓∈𝐴2

1(Δ
*),‖𝜓‖𝐴1

=1

⃒⃒⃒ ∫︁∫︁
𝐷*

ℛ*
𝑝𝜇𝑟(𝑧)𝜓(𝑧)𝑑𝑥𝑑𝑦

⃒⃒⃒
. (7)

This lower admissible bound ̂︀κ(𝜎𝑎 ∘ 𝑓) for quasiconformal dilatations of extensions (and
thereby for the Grunsky norm of 𝑓) is sharp in the sense that it cannot be replaced by a
smaller for each 𝑓 ∈ 𝑆(∞).

(d) The Kobayashi distance between the Schwarzian 𝑆𝑓 representing [𝜎𝑎 ∘ 𝑓 ] in the
universal Teichmüller space T and the base point of T equals tanh−1 ̂︀κ(𝜎𝑎 ∘ 𝑓).

(e) The curve 𝐿 = 𝐹 (𝑆1) is a 𝑘′-quasicircle with reflection coefficient 𝑞𝐿 = 𝑘0
connected with 𝑘′ by

1 + 𝑞𝐿
1− 𝑞𝐿

=

(︂
1 + 𝑘′

1− 𝑘′

)︂2

. (8)

The quantity ̂︀κ(𝑓) can be regarded as the outer limit Grunsky norm of 𝑓 on Δ.
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3. Remarks

Passing to inversions 𝐹𝑓 (𝜁) = 1/𝑓(1/𝜁), this theorem can be reformulated for non-
vanishing univalent function 𝐹 (𝜁) = 𝜁 + 𝑏0 + 𝑏1𝜁

−1 + . . . , 𝐹 (𝜁) ̸= 0 in the disk Δ* with
quasiconformal extensions to Δ. For example, it holds for all odd univalent functions
𝐹 (𝜁) = 𝜁 + 𝑏1𝜁

−1 + . . . in Δ*.

4. Proof

First of all, any quasiconformal extension of 𝑓 across the boundary circle 𝜕Δ into a
domain containing Δ can be extended, using Lehto’s theorem [16], onto the whole spherê︀C; then κ(𝑓) ≤ 𝑘(𝑓) < 1, which yields (𝑎) ⇒ (𝑏).

Conversely, any univalent function 𝑓 with κ(𝑓) ≤ 𝑘 < 1 admits by the Pommerenke —
Zhuravlev theorem a 𝑘1(𝑘)-quasiconformal extension with 𝑘1 ≥ 𝑘, hence (𝑎) ⇒ (𝑏).

The main part of the proof is to establish that any 𝑓 ∈ 𝑆(∞) has the distortion given
by (𝑐).

Observe that every Grunsky coefficient 𝛼𝑚𝑛(𝑓) of 𝑓 is represented as a polynomial of a
finite number of its initial Taylor coefficients 𝑎2, . . . , 𝑎𝑠, hence it depends holomorphically on
Beltrami coefficients 𝜇 of quasiconformal extensions of 𝑓 running over the ball Belt(Δ*)1.
The same is true for the Grunsky coefficients of each ℛ𝑝𝑓 , which also are polynomials of
𝑎2, . . . , 𝑎𝑙. This implies the holomorphy of maps

ℎx,𝑝(𝜇) =
∞∑︁

𝑚,𝑛=1

√
𝑚𝑛 𝛼𝑚𝑛(ℛ𝑝𝑓

𝜇) 𝑥𝑚𝑥𝑛 : Belt(𝐷𝑟)1 → Δ (9)

for any fixed 𝑝 and any x = (𝑥𝑛) ∈ 𝑆(𝑙2). Note also that supx∈𝑆(𝑙2) ℎx,𝑝(𝜇) = κ(ℛ𝑝𝑓
𝜇), and

each norm κ(ℛ𝑝𝑓
𝜇) is a continuous plurisubharmonic function on the ball Belt(Δ*)1.

Moreover, in view of holomorphy of the map 𝜄𝑟 : 𝜇 ↦→ 𝜇𝑟 stated above, the correspond-
ing functions ℎx,𝑝(𝜇𝑟) and κ(ℛ𝑝𝜎𝑎 ∘ 𝑓 (𝜇𝑟) have similar properties.

One can deal with 𝑓 ∈ 𝑆(∞), otherwise one needs to compose 𝑓 with the transform
(2).

First assume that the function 𝑓 admits quasiconformal extension to {1 < |𝑧| < ∞}
of Teichmüller type, i.e., with Beltrami coefficient

𝜇0(𝑧) = ‖𝜇0‖∞|𝜓0(𝑧)|/𝜓0(𝑧), (10)

where the quadratic differential 𝜓0 can have at most a simple pole at the infinite point,

𝜓0(𝑧) = 𝑐3𝑧
−3 + 𝑐4𝑧

−4 + . . . . (11)

If 𝑐3 ̸= 0, 𝑐4 ̸= 0, then, noting that ̂︀κ(ℛ2𝑓
𝜇0) = ̂︀κ(𝑓𝜇0), one can start with the squared

map ℛ2𝑓
𝜇0 whose defining quadratic differential is by (4) of the form

ℛ*
2𝜓0(𝑧

2) = 4(𝑐3𝑧
−4 + 𝑐4𝑧

−6 + . . . )

and has at 𝑧 = ∞ zero of even order. Not to complicate the notations, we assume that this
holds for 𝜓0 (hence in (11) 𝑐3 = 0), and we only need to consider the case when 𝜓0 has at
least two zeros of odd order.
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