УДК 621.382.323 ББК 22.3

ПРИБОР ДЛЯ ИЗМЕРЕНИЯ КРУТИЗНЫ МАЛОМОЩНЫХ ПОЛЕВЫХ ТРАНЗИСТОРОВ

С.А. Судоргин

Представлена разработка прибора на базе микроконтроллера для измерения крутизны маломощных полевых транзисторов. Приведены структурная схема, принципиальная электрическая схема, а также алгоритм работы прибора. Дана принципиальная схема блока питания устройства и его нагрузочные характеристики. Результаты измерения крутизны полевых транзисторов различных типов представлены в виде таблицы.

Ключевые слова: полевые транзисторы, крутизна характеристики, транзисторы с каналом р-типа, транзисторы с каналом п-типа.

Введение

Полевым транзистором называют полупроводниковый прибор, работа которого обусловлена потоком основных носителей, протекающим через проводящий канал, и управляемым электрическим полем [5]. Полевые транзисторы в виде дискретных элементов и в составе интегральных микросхем находят широкое применение в различных конструкциях. Эти полупроводниковые приборы имеют ряд преимуществ перед биполярными транзисторами и электронными лампами. К ним относится высокое входное сопротивление по постоянному току и на высокой частоте, малый уровень шумов. Линейная зависимость крутизны полевых транзисторов от управляющего напряжения обеспечивает более сильное подавление помех во входных каскадах радиоприемных устройств [4]. Полевые транзисторы можно применять в качестве сопротивления, управляемого напряжением в устройствах регулирования уровня сигналов. Таким образом, эти устройства позволяют решить ряд проблем, возникающих в процессе разработки и изготовления всевозможных радиотехнических конструкций. Большинство неисправностей приборов, которые связаны с выходом из строя полевых транзисторов, удается устранить простой заменой, а для этого их надо подобрать по основным параметрам, к которым относится крутизна характеристики [1]. Таким образом, возникает необходимость измерения данного параметра.

Описание прибора

Прибор для измерения крутизны полевых транзисторов собран на базе микроконтроллера, включает в себя блок питания, внешний цифро-аналоговый преобразователь (ЦАП), источник

опорного напряжения, измерительную схему и LCD-панель, необходимую для визуализации результатов измерений. На измерительной схеме отображены дифференциальный и инвертирующий усилители.

Устройство предназначено для измерения крутизны характеристики как маломощных полевых транзисторов, так и транзисторов средней мощности. Прибор позволяет измерять крутизну транзисторов как с p-каналом, так и с n-каналом. Тип канала выбирается вручную при помощи переключателя на передней панели прибора. Крутизна характеристики полевого транзистора вычисляется по формуле:

$$S = \frac{|I_1 - I_2|}{|U_1 - U_2|}.$$

Стабильный источник опорного напряжения необходим для работы измерительной части устройства. Диапазон напряжений на выходе ЦАП составляет от 0 до +5 В. Дифференциальный усилитель, использованный при реализации устройства, имеет коэффициент усиления, равный 2,5.

Нагрузочные характеристики блока питания устройства приведены в таблице 1. На рисунках 1, 2 и 3 показаны графики нагрузочных характеристик.

Нагрузочные характеристики блока питания

Таблица 1

$R_{\scriptscriptstyle H}$, Om	$U_{\text{\tiny BBIX}} = 5 \text{ B}$	$U_{\text{\tiny BMX}} = 12 \text{ B}$	$U_{_{\rm B b X}} = -12 {\rm B}$
1 000	5,03	11,95	-11,94
900	5,03	11,95	-11,94
800	5,03	11,95	-11,94
700	5,03	11,94	-11,94
600	5,03	11,94	-11,94
500	5,03	11,94	-11,94
400	5,03	11,94	-11,94
300	5,03	11,94	-11,94
200	5,03	11,94	-11,94
100	5,03	11,94	-11,93
90	5,03	11,93	-11,93
80	5,03	11,91	-11,93
70	5,02	11,85	-11,92
60	5,02	11,32	-11,68
50	5,02	10,60	-10,75

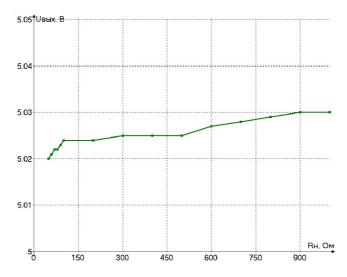


Рис. 1. График нагрузочной характеристики блока питания для напряжения «+5 В»

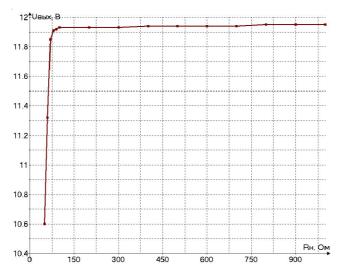


Рис. 2. График нагрузочной характеристики блока питания для напряжения «+12 В»

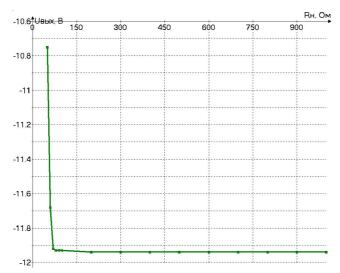


Рис. 3. График нагрузочной характеристики блока питания для напряжения «-12 В»

Результаты измерений

Была измерена крутизна характеристики полевых транзисторов с каналом p-типа: КП101Г, КП103Е, КП103Ж, КП103И; с каналом n-типа: КП302А, КП303А, КП305Е, КП901А. Измерение крутизны для каждого из типов транзисторов проводилось по пять раз. В таблице 2 представлены экспериментальные данные.

Таблица 2

Модель	Крутизна S, мА/В					Среднее	Среднее	Справочное
транзистора	1	2	3	4	5	значение	квадр. откл.	значение,
						$S_{\rm cp,}$ MA/B	σ, мА/В	$S_{\rm c}$, mA/B
КП101Г	0,162	0,158	0,163	0,135	0,188	0,1612	0,0188	0,0188
КП103Е	1,256	1,714	0,809	2,102	1,453	1,4668	0,4853	0,4-2,4
КП103Ж	0,715	2,166	1,828	1,469	1,561	1,5478	0,5387	0,5–2,8
КП103И	2,136	1,308	0,956	1,145	1,957	1,5004	0,5177	0,8–2,6
КП302А	6,176	8,537	5,116	4,956	5,886	6,1342	1,4372	≥ 5
КП303А	0,975	3,129	1,786	3,423	3,589	2,5804	1,1442	1–4
КП305Е	9,857	6,792	6,893	7,112	9,314	7,9936	1,4704	5,2–10,5
КП901А	30,116	28,562	35,812	31,287	26,33	30,423	3,5364	≥ 50

Из таблицы 2 видно, что экспериментальные результаты для маломощных полевых транзисторов хорошо согласуются со справочными данными [2]. А для мощного транзистора КП901А параметры не совпадают со справочными. Это связано с тем, что мощности прибора не хватает для измерения транзисторов, кругизна которых более 30 мА/В.

Заключение

В заключении можно обобщить результаты работы:

- 1. Изготовлен прибор для измерения крутизны маломощных полевых транзисторов на базе микроконтроллера с возможностью вывода результатов измерений на LCD-панель.
- 2. Стоимость всех компонентов прибора не превышает 1 500 руб. (вместе с корпусом), что выгодно отличает его от промышленных образцов, цена которых порядка 20 000–40 000 рублей.
 - 3. Измерены нагрузочные характеристики блока питания прибора.
- 4. Измерена крутизна характеристики для различных полевых транзисторов. Результаты измерений согласуются со справочными.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бочаров, Л. Н. Полевые транзисторы / Л. Н. Бочаров. М.: Радио и связь, 1984. 80 с.
- 2. Гришина, Л. М. Полевые транзисторы : справочник / Л. М. Гришина, В. В. Павлов. М. : Радио и связь, 1982.-72 с.
- 3. Никитин, А. В. Основы радиоэлектроники. Методические указания к лабораторному практикуму. В 4 ч. Ч. 2. Полупроводниковые приборы : лаб. раб. № 7–9 / А. В. Никитин, А. Л. Якимец. Волгоград : Изд-во ВолГУ, 2004. 52 c.
 - 4. Овечкин, Ю. А. Полупроводниковые приборы / Ю. А. Овечкин. М. : Высш. шк., 1986. -303 с.
 - 5. Титце, У. Полупроводниковая схемотехника / У. Титце, К. Шенк. М.: Мир, 1982. 512 с.

THE DEVICE FOR MEASUREMENT OF A STEEPNESS OF LOW-POWER FIELD TRANSISTORS

S.A. Sudorgin

In the paper describe of the micro controller device for measurement of a steepness of low-power field transistors. The block diagram, the basic electrical circuit, and the algorithm of job of the device show in the paper. The basic circuit of a power unit of the device and its load-carrying characteristics also is submitted. The results of measurements of a steepness of field transistors of various types are shown in the table.

Key words: field transistors, steepness of transistors, p-channel transistors, n-channel transistors.