
www.volsu.ru

МАТЕМАТИКА

DOI: https://doi.org/10.15688/mpcm.jvolsu.2017.3.5

UDC 517
LBC 22.161
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МАТЕМАТИКА

1. Introduction

We consider non-divergence elliptic operator

ℒ𝑢 := −
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝐷𝑖𝐷𝑗𝑢 in Ω. (1.1)

Such operators arise in theory of stochastic processes and various applications.
In (1.1) Ω is a domain in R𝑛, 𝑛 ≥ 3, and 𝐷𝑖 stands for the differentiation with respect

to 𝑥𝑖. We suppose that the boundary 𝜕Ω is split 𝜕Ω = Γ1 ∪ {ζ} ∪ Γ2. Here Γ1 is support of
the Dirichlet condition, and Γ2 is support of the oblique derivative condition:

𝑢(𝑥) = Φ(𝑥) on Γ1;
𝜕𝑢

𝜕ℓ
(𝑥) := lim

δ→+0

𝑢(𝑥)− 𝑢(𝑥− δℓ)
δ

= Ψ(𝑥) on Γ2,

where ℓ = ℓ(𝑥) is a measurable, and uniformly non-tangential outward vector field on Γ2.
Without loss of generality we can suppose |ℓ| ≡ 1. We call Γ1 Dirichlet boundary, and Γ2

Neumann boundary.
At point ζ ∈ Γ1 ∩Γ2 function 𝑢 is not defined, and we investigate asymptotic properies

of the solution at this point.
For divergence type equation in case of Dirichlet Data this type of theorem first was

proved in very general case by Mazya in [9]. Criteria for regularity for Zaremba problem
first was obtained by Mazya in [3].

Here we consider the case of non-divergence equation in bounded domain Ω where
Neumann Γ2 is Lipschitz in a neighborhood of the point ζ.

In the case Γ2 = ∅ the similar question was discussed by E.M. Landis (see [5; 6]) and
sharpened by Yu.A. Alkhutov [2].

We always assume that the matrix of leading coefficients (𝑎𝑖𝑗) is bounded, measurable
and symmetric, and satisfies the uniform ellipticity condition:

max
|ξ|=1

sup
𝑥∈Ω

𝑒(𝑥, ξ) =: 𝑒1 < ∞,

where 𝑒 is the ellipticity function (see [2; 6])

𝑒(𝑥, ξ) =

∑︀𝑛
𝑖=1 𝑎𝑖𝑖(𝑥)∑︀𝑛

𝑖,𝑗=1 𝑎𝑖𝑗(𝑥)ξ𝑖ξ𝑗
.

For simplicity we consider the operators without lower-order terms, a more general case can
be easily managed.

The paper is organized as follows.
In Sec. 2 we formulate some known results about non-divergence equations: lemma

on non-tangential derivatives at point of maximum (minimum) on the boundary in the form
of Nadirashvili [10], the Landis Growth Lemma in case Γ2 = ∅, and Growth Lemma in
Krylov’s form.

The Growth Lemma for elliptic and parabolic equations first was introduced by Landis
in [4; 7]. Growth Lemma is a fundamental tool to study qualitative properties and regularity
of solutions in bounded and unbounded domain. Recent review on Growth Lemma and its
applications was published in [12] (see also [1]).
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In Sec. 3 we prove strict Growth Lemma near Neumann boundary.
Sec. 4 glues two Growth Lemmas. This result was obtained under some admissibility

constraint on the boundary Γ2, which is an analog of isoperimetric condition.
In the last Sec. 5, dichotomy theorem is proved for solutions of mixed boundary value

problem to non-divergence elliptic equation.
We use the following notation. 𝑥 = (𝑥′, 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛 is a point in R𝑛.

𝐵(𝑥,𝑅) is the ball centered in 𝑥 with radius 𝑅.

2. Preliminary Results

Here we recall some known results and prove auxiliary lemmas for the sub- and
supersolution of the equation ℒ𝑢 = 0. We call function 𝑢 sub-elliptic (super-elliptic) if
𝑢 ∈ 𝑊 2

𝑛(Ω)
⋂︀
𝒞1(Ω ∪ Γ2), and ℒ𝑢 ≤ 0 (respectively, ℒ𝑢 ≥ 0).

We say that Γ2 satisfies inner cone condition (see, e.g., [10]) if there are 0 < ϕ < π/2
and ℎ > 0 such that for any 𝑦 ∈ Γ2 there exists a right cone 𝐾(𝑦) ⊂ Ω with the apex at 𝑦,
apex angle ϕ and of the height ℎ.

Fig. 1. Inner cone condition

In [10] N. Nadirashvili obtained fundamental generalization of Oleinik — Hopf lemma2,
the so-called “lemma on non-tangential derivative”:
Lemma 2.1. Let Γ2 satisfy inner cone condition. Let a non-constant function 𝑢 be
super-elliptic (sub-elliptic) ℒ𝑢 ≥ 0 (ℒ𝑢 ≤ 0) in Ω. Suppose that 𝑦 ∈ Γ2 and 𝑢(𝑦) ≤
≤ 𝑢(𝑥) (𝑢(𝑦) ≥ 𝑢(𝑥)) for all 𝑥 ∈ Γ2. Then for any neighborhood 𝑆 of 𝑦 on Γ2 and for
any ε < ϕ there exists a point ̃︀𝑥 ∈ 𝑆 s.t.

𝜕𝑢

𝜕ℓ
(̃︀𝑥) < 0

(︁𝜕𝑢
𝜕ℓ

(̃︀𝑥) > 0
)︁

for any outward direction ℓ s.t. the angle γ between ℓ and the axis of 𝐾(̃︀𝑥) is not greater
then ϕ− ε.

From standard maximum principle and Lemma 2.1 follows comparison theorem for
mixed boundary value problem.
Lemma 2.2. Let Ω be a bounded domain, 𝜕Ω = Γ1 ∪ Γ2. Let Γ2 satisfy inner cone
condition. Suppose that vector field ℓ satisfies the same condition as in Lemma 2.1. Let
functions 𝑢 and 𝑣 belong to 𝑊 2

𝑛(Ω)
⋂︀
𝒞1(Ω ∪ Γ2) ∩ 𝒞(Ω).

Then, if ℒ𝑢 ≤ ℒ𝑣 in Ω, 𝑢 ≤ 𝑣 on Γ1, and 𝜕𝑢
𝜕ℓ

≤ 𝜕𝑣
𝜕ℓ

on Γ2 then 𝑢 ≥ 𝑣 in Ω.
Definition 2.1. Let Ω be a domain, 𝜕Ω = Γ1 ∪ Γ2. Define “small ball” 𝐵(0, 𝑅) and “big
ball” 𝐵(0, 𝑎𝑅), 𝑎 > 1 (see Fig. 2).
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We call the function 𝑤 barrier with respect to mixed boundary value problem in these
two balls if it posses properties:

𝑤 is sub-elliptic (ℒ𝑤 ≤ 0) in the intersection Ω ∩𝐵(0, 𝑎𝑅); (2.1)

𝑤(𝑥) ≤ 1 on Γ1 ∩𝐵(0, 𝑎𝑅); (2.2)

𝜕𝑤

𝜕ℓ
≤ 0 on Γ2 ∩𝐵(0, 𝑎𝑅); (2.3)

𝑤 ≤ 0 on Ω ∩ 𝜕𝐵(0, 𝑎𝑅); (2.4)

𝑤(𝑥) ≥ η0 in the intesection 𝐵(0, 𝑅) ∩ Ω (2.5)

for some constant η0.

Fig. 2. Domain 𝐺 and two balls 𝐵(0, 𝑅) and 𝐵(0, 𝑎𝑅) (𝑎 > 1)

Now we are in the position to prove the following strict growth property for subsolu-
tions of the mixed boundary value problem.
Lemma 2.3. Let Ω be a domain, 𝜕Ω = Γ1 ∪ Γ2. Suppose that a function 𝑢 be sub-elliptic
in Ω ∩ 𝐵(0, 𝑎𝑅), 𝑢 > 0 in Ω, 𝑢 = 0 on Γ1 ∩ 𝐵(0, 𝑎𝑅) and 𝜕𝑢

𝜕ℓ
≤ 0 on Γ2 ∩ 𝐵(0, 𝑎𝑅). Let

Γ2 satisfy inner cone condition.
Assume that there is a barrier 𝑤 in balls 𝐵(0, 𝑅) and 𝐵(0, 𝑎𝑅).
Then

sup
Ω∩𝐵(0,𝑎𝑅)

𝑢 ≥
supΩ∩𝐵(0,𝑅) 𝑢

1− η0
. (2.6)

Proof. Let 𝑀 = supΩ∩𝐵(0,𝑎𝑅) 𝑢, and let the barrier 𝑤(𝑥) be as in Definition 2.1. Define

𝑣(𝑥) = 𝑀(1− 𝑤(𝑥)).

Obviously ℒ𝑣 ≥ ℒ𝑢 in Ω, 𝑣 ≥ 𝑢 on Γ1 ∩ 𝐵(0, 𝑎𝑅), 𝜕𝑣
𝜕ℓ

≥ 𝜕𝑢
𝜕ℓ

on Γ2, and 𝑣 ≥ 𝑀 ≥ 𝑢
on 𝜕𝐵(0, 𝑎𝑅) ∩ Ω. Applying comparison Lemma 2.2 to functions 𝑣 and 𝑢 in the domain
Ω ∩ 𝐵(0, 𝑎𝑅) we get that 𝑣 ≥ 𝑢. In the intersection Ω ∩ 𝐵(0, 𝑅) this gives with regard of
(2.5)

𝑀(1− η0) ≥ 𝑀(1− inf
Ω∩𝐵(0,𝑅)

𝑤) ≥ sup
Ω∩𝐵(0,𝑅)

𝑢.

The latter is equivalent to statement in (2.6).

We recall the well-known notion of 𝑠-capacity, see, e.g., [6, Sec. I.2].
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Definition 2.2. Let 𝐻 be a Borel set. Let a measure µ be defined on Borel subsets of 𝐻.
We call µ admissible and write µ ∈ ℳ(𝐻) if∫︁

𝐻

𝑑µ(𝑦)

|𝑥− 𝑦|𝑠
≤ 1, for 𝑥 ∈ 𝑅𝑛 ∖𝐻.

Then the quantity
C𝑠(𝐻) = sup

µ∈ℳ(𝐻)

µ(𝐻)

is called 𝑠-capacity of 𝐻.
We also recall the following simple statement.

Proposition 2.1. If 𝑠 ≥ 𝑒1 − 2 then 𝐿|𝑥|−𝑠 ≤ 0.
Now we formulate a variant of the Landis Growth Lemma, see [6, Sec. I.4].

Lemma 2.4. Let function 𝑢 be sub-elliptic in Ω ∩ 𝐵(0, 𝑎𝑅), 𝑢 > 0 in Ω, 𝑢 = 0 on
Γ1 = 𝜕Ω ∩ 𝐵(0, 𝑎𝑅). Let 𝑠 ≥ 𝑒1 − 2. Then there exists 0 < η1 < 1 depending only on 𝑠
s.t.

sup
Ω∩𝐵(0,𝑎𝑅)

𝑢 ≥
supΩ∩𝐵(0,𝑅) 𝑢

1− η1C𝑠(𝐻)𝑅−𝑠
.

Here 𝐻 = Γ1 ∩𝐵(0, 𝑅).
Consequently if 𝐵(0, 𝑅) ∖ Ω contains a ball with radius δ𝑅 then

sup
Ω∩𝐵(0,𝑎𝑅)

𝑢 ≥
supΩ∩𝐵(0,𝑅) 𝑢

1− ̃︀η1 ,

where the constant ̃︀η1 depend on 𝑠 and δ.

3. Growth Lemma near Neumann boundary

Here we prove the Growth Lemmas in the domain adjunct to Γ2 under some assumption
on Γ1.

We recall that Γ2 is uniformly Lipschitz in a neighborhood of 𝑥0. This means that there
is δ > 0 s.t. the set Γ2 ∩ 𝐵(𝑥0, δ) is the graph 𝑥𝑛 = 𝑓(𝑥′) in a local Cartesian coordinate
system, and the function 𝑓 is Lipschitz. Moreover, we suppose that its Lipschitz constant
does not exceed 𝐿. Without loss of generality we assume that Ω∩𝐵(𝑥0, δ) ⊂ {𝑥𝑛 < 𝑓(𝑥′)}
(see Fig. 3). This implies the inner cone condition if we direct the axis of the cone 𝐾 along
−𝑥𝑛 and set ϕ = cot−1(𝐿).
Lemma 3.1. Let Γ2 ∩𝐵(0, 𝑅) = ∅, and 𝑥0 ∈ Γ2∩ 𝜕𝐵(0, 𝑅), for some 𝑅 ≤ δ

2
. Assume that

Ω ∩𝐵(0,α𝑅) = ∅ for some 0 < α < 1
2

(see Fig. 3).
Suppose that the vector field ℓ satisfies conditions in Lemma 2.1 uniformly on Γ2

(that is, ε does not depend on 𝑥 ∈ Γ2).
Let function 𝑢 be sub-elliptic (ℒ𝑢 ≤ 0 in Ω), 𝑢 > 0 in Ω, 𝑢 = 0 on Γ1 and 𝜕𝑢

𝜕ℓ
≤ 0

on Γ2.
Then there exists 𝑎 > 1 depending on the Lipschitz constant 𝐿, ε and ellipticity

constant 𝑒1 s.t.
sup

Ω∩𝐵(0,𝑎𝑅)

𝑢 ≥
supΩ∩𝐵(0,𝑅) 𝑢

1− η2
. (3.1)

Here η2 ∈ (0, 1) is defined by α and 𝑎.
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Fig. 3. Domain Ω, boundary Γ2 and balls 𝐵(0, 𝑅), 𝐵(0, 𝑎𝑅) and 𝐵(0,α𝑅)

Proof. We take 𝑠 ≥ 𝑒1 − 2 and set

𝑤(𝑥) =
α𝑠𝑅𝑠

|𝑥|𝑠
− α𝑠

𝑎𝑠
.

We claim that for 𝑎 sufficiently close to 1 this function satisfies all conditions in Definition
2.1. Indeed:

1. From Proposition 2.1 function 𝑤 is sub-elliptic, condition (2.1) holds.
2. Evidently 𝑤 = 0 on 𝜕𝐵(0, 𝑎𝑅), condition (2.4) holds,
3. while Ω ∩ 𝐵(0,α𝑅) = ∅ implies 𝑤 ≤ 1 in Ω ∩ 𝐵(0, 𝑎𝑅) (and therefore on Γ1)

condition (2.2) holds.
Now we check condition (2.3). We introduce the Cartesian coordinate system with

axes collinear with those of local coordinate system at 𝑥0. We observe that the assumption
Γ2 ∩𝐵(0, 𝑅) = ∅ and Lipschitz condition imply that for 𝑥 ∈ Γ2 ∩𝐵(0, 𝑎𝑅)

|𝑥′| ≤ 𝑅√
1 + 𝐿2

(𝐿+
√
𝑎2 − 1); 𝑥𝑛 ≥ 𝑅√

1 + 𝐿2
(1− 𝐿

√
𝑎2 − 1).

Moreover, our assumption on the vector field ℓ means that

|ℓ′| ≤ sin(cot−1(𝐿)− ε) ≤ 1√
1 + 𝐿2

− ̃︀ε;
ℓ𝑛 ≥ cos(cot−1(𝐿)− ε) ≥ 𝐿√

1 + 𝐿2
+ ̃︀ε

where ̃︀ε depends only on 𝐿 and ε.
Therefore, the direct calculation gives

𝜕𝑤

𝜕ℓ
(𝑥) = − 𝑠α𝑠𝑅𝑠

|𝑥|𝑠+2
· (𝑥𝑛ℓ𝑛 + ℓ′ · 𝑥′)

≤ 𝑠α𝑠𝑅𝑠

|𝑥|𝑠+2
· 𝑅√

1 + 𝐿2

(︁√
𝑎2 − 1 ·

(︀√
1 + 𝐿2 + ̃︀ε(𝐿− 1)

)︀
− ̃︀ε(︀𝐿+ 1

)︀)︁
.

It is easy to see that, given ̃︀ε > 0, there is 𝑎 > 1 depending only on ̃︀ε and 𝐿 s.t. 𝜕𝑤
𝜕ℓ
(𝑥) ≤ 0,

and (2.3) holds.
Finally, for 𝑥 ∈ Ω ∩𝐵(0, 𝑅), 𝑤(𝑥) ≥ α𝑠(1− 𝑎−𝑠) =: η2, and (2.5) holds.
Thus, the claim follows, and 𝑤 is the barrier in the balls 𝐵(0, 𝑅), 𝐵(0, 𝑎𝑅). From

Lemma 2.3 we get (3.1).
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4. Growth Lemma in the Spherical Layer

In this section we prove Growth Lemma in spherical layer near junction point of
interest ζ = Γ1 ∩ Γ2. Without loss of generality we put ζ = 0.

First we will introduce admissible class of domains in the spherical layer.
Definition 4.1. Fix five constants 0 < 𝑞1 < 𝑞2 < 𝑞* < 𝑞3 < 𝑞4. Define two spherical layers
�̂�𝑅 ⊂ 𝑈𝑅:

𝑈𝑅 = 𝐵(0, 𝑞4𝑅) ∖𝐵(0, 𝑞1𝑅); �̂�𝑅 = 𝐵(0, 𝑞3𝑅) ∖𝐵(0, 𝑞2𝑅).

We call Ω admissible in the layer 𝑈𝑅 if for some θ > 0 there is finite set of the balls
(see Fig. 4)

ℬ = {𝐵𝑘 = 𝐵(ξ𝑘, θ𝑅)}𝑁𝑘=0; 𝐵𝑘 ⊂ �̂�𝑅

s.t. the following holds:
1. C𝑠(𝐵

0 ∩ Γ1) ≥ κC𝑠(Γ1 ∩ �̂�𝑅), for some constant κ > 0.
2. 𝐵𝑘 ∩ Γ2 = ∅, 𝑘 = 1, .., 𝑁 , and 𝐵(ξ0, 𝑎θ𝑅) ∩ Γ2 = ∅, where 𝑎 > 1 is defined in

Lemma 3.1. 3

3. There is δ ∈ (0, 1/2) s.t. every ball in ℬ can be connected with 𝐵0 by a subsequence
of balls 𝐵𝑗 s.t. any intersection 𝐵𝑗 ∩𝐵𝑗+1 ∩ Ω contains the ball 𝐵(ξ𝑗+1, δ𝑅).

4. The set 𝑆𝑅 = 𝜕𝐵(0, 𝑞*𝑅) ∩ Ω is covered by balls in ℬ.
Fig. 4 schematically illustrate Definition 4.1.

Fig. 4. On the left: domain Ω admissible in Spherical Layer 𝑈𝑅. On the right: domain and layer
zoomed near boundary Γ2 (bold line)

Lemma 4.1. Let function 𝑢 be sub-elliptic, 𝑢 > 0 in Ω. Suppose that 𝑢 ≤ 0 on Γ1 and
𝜕𝑢
𝜕ℓ

≤ 0 on Γ2. Let domain Ω be admissible in the layer 𝑈𝑅. Then

sup
Ω

𝑢 ≥
sup𝑆𝑅

𝑢

1− ηC𝑠(𝐻)𝑅−𝑠
.

Here 𝐻 = Γ1∩ �̂�𝑅 while η depends on 𝑠, the ellipticity constant 𝑒1, the Lipschitz constant
𝐿, the vector field ℓ, constants θ, κ, δ in Definition 4.1 and the number 𝑁 of balls in the
set ℬ.
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Proof. Without loss of generality we set θ = 1. Let sup𝑆𝑅
𝑢 =: 𝑚 = 𝑢(𝑦), here 𝑦 ∈ 𝑆𝑅.

By assumption 4 in Definition 4.1, 𝑦 ∈ 𝐵𝑘 for some 𝑘. By assumption 3, we can choose a
subsequence 𝐵𝑗 connecting 𝐵0 and 𝐵𝑘.

Consider the ball 𝐵0 and the ball 𝐵(ξ0, 𝑎𝑅), 𝑎 > 1, concentric to it. Due to assump-
tions 1 and 2 in Definition 4.1, we can apply Lemma 2.4 to get:

𝑀 := sup
Ω

𝑢 ≥ sup
Ω∩𝐵(ξ0,𝑎𝑅)

𝑢 ≥ sup𝐵0∩Ω 𝑢

1− κη1C𝑠(𝐻)𝑅−𝑠
.

Suppose that

sup
𝐵0∩Ω

𝑢 ≥ 𝑚(1− δ0), where δ0 =
κη1C𝑠(𝐻)𝑅−𝑠

2(1− κη1C𝑠(𝐻)𝑅−𝑠)
. (4.1)

Then after some calculation we get

𝑀 ≥ 𝑚

1− η3C𝑠(𝐻)𝑅−𝑠

for some η3 depending on κη1, and the statement follows.
If (4.1) does not hold, we consider the function

𝑢1(𝑥) = 𝑢(𝑥)−𝑚(1− δ0), (4.2)

then 𝑢1(𝑥) ≤ 0 in 𝐵0 ∩ Ω.
By assumption 3, 𝐵0∩𝐵1∩Ω contains a ball of radius δ𝑅. Let Ω1 := {𝑥 : 𝑢1(𝑥) > 0}.

Assume that 𝐵1 ∩ Ω1 ̸= ∅, otherwise we consider the first ball in the subsequence 𝐵𝑗 for
which this property holds.

Suppose that
sup
𝐵1∩Ω

𝑢1 ≥ 𝑚δ0(1− τ), (4.3)

here the constant τ will be chosen later.
Consider any simply connected component of the domain 𝐵(ξ1, 𝑎𝑅) ∩ Ω1 in which the

supremum in (4.3) is realised. There are two possibilities:
a) 𝐵(ξ1, 𝑎𝑅) ∩ Γ2 = ∅;
b) 𝐵(ξ1, 𝑎𝑅) ∩ Γ2 ̸= ∅

(recall that 𝑎 = 𝑎(𝐿, ℓ, 𝑒1) > 1 is defined in Lemma 3.1).
Let us start with case (a). Due to assumption 3, Lemma 2.4 and (4.3) it follows that

sup
𝐵(ξ1,𝑎𝑅)∩Ω

𝑢1 ≥
sup𝐵1∩Ω 𝑢1

1− ̃︀η1 ≥ 𝑚δ0(1− τ)
1− ̃︀η1 . (4.4)

Using (4.2) and (4.4) we deduce

sup
𝐵(ξ1,𝑎𝑅)∩Ω

𝑢 ≥ 𝑚
(︀
1 +

δ0(̃︀η1 − τ)
1− ̃︀η1 )︀

.

Letting τ = ̃︀η1
2

we get

𝑀 ≥ sup
𝐵(ξ1,𝑎𝑅)∩Ω

𝑢 ≥ 𝑚
(︀
1 +

δ0τ

1− 2τ

)︀
, (4.5)
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and the statement follows.
In case of (b) we proceed with the same arguments but instead of Lemma 2.4 we

apply Lemma 3.1 and put τ = η2
2
. Thus, if (4.3) holds with τ = 1

2
min{̃︀η1, η2} then (4.5) is

satisfied in any case, and Lemma is proved.
If (4.3) does not hold then function 𝑢 satisfies

sup
𝐵1∩Ω

𝑢 ≤ 𝑚(1− δ0τ).

As in previous step we consider the function

𝑢2(𝑥) = 𝑢(𝑥)−𝑚(1− δ0τ),

𝑢2(𝑥) ≤ 0 in 𝐵1 ∩ Ω.
Repeating previous argument we deduce that if

sup
𝐵2∩Ω

𝑢2 ≥ 𝑚δ0τ(1− τ) (4.6)

then

𝑀 ≥ 𝑚
(︀
1 +

δ0τ
2

1− 2τ

)︀
,

and Lemma is proved.
If (4.6) does not hold, then

sup
𝐵2∩Ω

𝑢 ≤ 𝑚(1− δ0τ2).

Repeating this process we either prove Lemma or arrive at the inequality

sup
𝐵𝑘∩Ω

𝑢 ≤ 𝑚(1− δ0τ𝑘)

that is impossible since 𝑦 ∈ 𝐵𝑘 and 𝑢(𝑦) = 𝑚.

5. Dichotomy of solutions

In this section we will apply obtained Growth Lemma in spherical layer to prove
dichotomy of solutions near point ζ of the junction of Dirichlet and Neumann boundaries.
As in previous section we put ζ = 0.

Let Ω ⊂ {𝑥 : 𝑥𝑛 < 𝑓(𝑥′)} and Γ2 is a graph of the function 𝑥𝑛 = 𝑓(𝑥′), 𝑓(0) = 0. Set
𝑅𝑚 = 𝑄−𝑚 for some 𝑄 > 1, 𝑆𝑚 = 𝜕𝐵(0, 𝑞*𝑅𝑚), and

𝑈𝑚 = 𝐵(0, 𝑞4𝑅𝑚) ∖𝐵(0, 𝑞1𝑅𝑚), �̂�𝑚 = 𝐵(0, 𝑞3𝑅𝑚) ∖𝐵(0, 𝑞2𝑅𝑚).

We fix 𝑁0 ∈ N and 𝑞1 < 𝑞2 < 𝑞* < 𝑞3 < 𝑞4 s.t. 𝑞* < 𝑞1𝑄. Suppose that for all
𝑚 ≥ 𝑁0 the domain Ω with boundaries Γ1 and Γ2 is admissible in the layer 𝑈𝑚 in the sense
of Definition 4.1 with 𝑅 = 𝑅𝑚, and all constants in Definition 4.1 do not depend on 𝑚.
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Lemma 5.1. Let function 𝑢 be sub-elliptic, 𝑢 > 0 in Ω. Suppose that 𝑢 ≤ 0 on Γ1 ∩
∩𝐵(0, 𝑞4𝑅𝑁0) and 𝜕𝑢

𝜕ℓ
≤ 0 on Γ2 ∩𝐵(0, 𝑞4𝑅𝑁0). Let domain Ω be admissible in the layers

𝑈𝑚, 𝑚 ≥ 𝑁0.
Let 𝑀𝑚 = sup𝑆𝑚∩Ω 𝑢. Then one of two statements holds:

either 𝑀𝑁1+1 ≥ 𝑀𝑁1 for some 𝑁1, and for all 𝑚 > 𝑁1

𝑀𝑚+1 ≥
𝑀𝑚

1− ηC𝑠(𝐻𝑚)𝑄𝑠𝑚
, (5.1)

or for all 𝑚 > 𝑁0

𝑀𝑚 ≥ 𝑀𝑚+1

1− ηC𝑠(𝐻𝑚)𝑄𝑠𝑚
. (5.2)

Here 𝐻𝑚 = Γ1 ∩ �̂�𝑚, and η is the constant from Lemma 4.1.

Proof. Due to Lemma 2.2, there are two possibilities:
(a) if 𝑀𝑁1+1 ≥ 𝑀𝑁1for some 𝑁1 > 𝑁0 then 𝑀(ρ) = sup𝜕𝐵(0,ρ)∩Ω 𝑢 > 𝑀𝑚, 𝑚 > 𝑁1

for any ρ < 𝑞*𝑅𝑚;
(b) otherwise 𝑀𝑚 > 𝑀𝑚+1 for all 𝑚 > 𝑁0.
Now Lemma 4.1 gives (5.1) in the case (a) and (5.2) in the case (b).

Remark 5.1. Let function 𝑢 be sub-elliptic, 𝑢 > 0 in Ω. Suppose that 𝑢 ≤ 0 on Γ1∩𝐵(0, ρ0)
and 𝜕𝑢

𝜕ℓ
≤ 0 on Γ2 ∩𝐵(0, ρ0). Then the maximum principle implies the following dichotomy

(we recall that 𝑀(ρ) = sup𝜕𝐵(0,ρ)∩Ω 𝑢):

either there is ρ* ≤ ρ0 s.t. for ρ2 < ρ1 < ρ* we have 𝑀(ρ2) > 𝑀(ρ1);
or 𝑀(ρ2) < 𝑀(ρ1) for all ρ2 < ρ1 < ρ0.

Applying recursively alternative in Lemma 5.1 and using Remark 5.1 we get asymptotic
dichotomy.
Theorem 5.2. Let the assumptions of Lemma 5.1 be satisfied. Suppose that∑︀∞

𝑚=0 C𝑠(𝐻𝑚)𝑄
𝑠𝑚 = ∞, where 𝐻𝑚 = Γ1 ∩ �̂�𝑚.

Then one of two statements holds:

either 𝑀(ρ) → ∞ as ρ→ 0, and

lim inf
ρ→∞

𝑀(ρ) exp
(︁
− ̂︀η [𝑐 ln ρ]∑︁

𝑚=0

C𝑠(𝐻𝑚)𝑄
𝑠𝑚
)︁
> 0,

or 𝑀(ρ) → 0 as ρ→ 0, and

lim sup
ρ→∞

𝑀(ρ) exp
(︁̂︀η [𝑐 ln ρ]∑︁

𝑚=0

C𝑠(𝐻𝑚)𝑄
𝑠𝑚
)︁
= 0,

Here ̂︀η and 𝑐 depend on the same quantities as η in Lemma 4.1.

REMARKS

1 Akif Ibraguimov partially supported by DMS NSF grant № 1412796 and Alexander I.
Nazarov supported by RFBR grant № 15-01-07650.
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2 In [10] classical solutions 𝑢 ∈ 𝒞2(Ω) ∩ 𝒞1(Ω) are used but due to the Aleksandrov —
Bakel’man maximum principle it is transferred to 𝑢 ∈ 𝑊 2

𝑛(Ω)
⋂︀

𝒞1(Ω ∪ Γ2).
3 Note that boundaries of some balls 𝐵𝑘 may touch Γ2.
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Аннотация. Статья посвящена качественному исследованию решения
задачи типа Зарембы в липшицевой области, поставленной для эллиптическо-
го уравнения в недивергентной форме. Основной результат — лемма о росте
типа Ландиса в сферическом слое для смешанной краевой задачи в классе «до-
пустимой области». На основе леммы о росте доказана теорема Фрагмена —
Линделефа в точке соединения границы Дирихле и границы, над которой
определена производная в некасательном направлении.

Ключевые слова: эллиптическое уравнение в недивергентной форме,
смешанная краевая задача, лемма о росте, теорема Фрагмена — Линделефа,
задача типа Зарембы.
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