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Abstract. In this short survey we give a background and explain some recent
developments in algebraic minimal cones and nonassociative algebras. A part of
this paper is recollections of my collaboration with my teacher, PhD supervisor
and a colleague, Vladimir Miklyukov on minimal surface theory that motivated
the present research.
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Introduction

In this short note I try to explain how and why certain nonassociative algebra struc-
tures arise in the context of minimal cones. The starting point of this relatively recent
subject comes from the Bernstein property for minimal graphs. More precisely, it comes
from an attempt to understand the breakdown in higher dimensions 𝑛 ≥ 8 of the celebrated
S.N. Bernstien theorem from 1915 on minimal two-dimensional graphs. Although the orig-
inal question remains still unanswered, it is clear now that the nonassociative aspect of
certain classes of elliptic type PDEs including eiconal equation, minimal surface equation
and even more general classes (see [15; 32]) is relevant and not a coincidence. Remarkably,
very related classes of nonassociative algebras appear very naturally in a very different,
group theoretic context, see [18; 22; 41] and the references thererin.

I do not set myself the goal to cover all the latest achievements in this area or to give
a complete overview. The subject is still under development and many basic questions are
still open. The interested reader is referred to the recent monograph [32] for unexpected
connections of nonassociative algebras to regularity theory of fully nonlinear PDEs. See also
the recent papers [25; 52; 55–58] for further results and basic concepts considered below.

Acknowledgments. I thank Prof. A.V. Loboda for his careful reading of the manuscript
and helpful suggestions.
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1. Bernstein’s problem

Let me first explain some relevant historical details. Miklyukov has been my supervisor
ever since I was a second year student, leading and coaching me all the way through my
PhD. I learned so much from him, both academically and professionally. Miklyukov always
had a very extensive range of interests covering several domains in nonlinear and geometrical
analysis. Somewhere in the very beginning, he once told me that around 1975–1976, one
of his colleagues suggested that he deal with minimal surfaces and try to apply there the
previously developed methods and results from the theory of quasiconformal mappings. The
idea turned out to be extremely fruitful and already in 1977–1980 he published a series of
important papers on boundary and asymptotic behaviour, Liouville type theorems for a large
class of quasilinear euqations [1–5]. In these papers, he masterly developed several concepts
and results from the classical complex analysis, potential theory and elliptic type PDEs, and
applied the new methods, in particular, to study of minimal surfaces in the Euclidean space.
In summary, his approach was based on a virtuous interplay of several key ingredients
including the extremal length, variational capacity, fundamental frequency, uniformization
theory, Beltrami equation, Liuville, Fragmén — Lindelöf, Denjoy — Carleman — Ahlfors
and Wiman type theorems. One of the main goals of the proposed by Miklyukov approach
was the famous Bernstein theorem and its generalizations.

Since an important role of this result playing in our further context, I briefly recall some
relevant definitions and concepts. A surface in R3 is called minimal if its mean curvature
vanishes everywhere. From an analytic point of view, this is equivalent to saying that a
minimal surface is a stationary point of the area functional. This implies that locally any
minimal surface satisfies a very nice quasilinear equation of the second order. In 1903, Sergei
Natanovich Bernstein, published a short note in Comptes Rendus containing some crucial
results on the analyticity solutions of second order elliptic partial differential equations,
hereby solving (in the 𝐶3-regularity class) the 19th problem addressed by Hilbert at the
First International Mathematical Congress in 1900. Between 1903 and 1918, S.N. Bernstein
published several important memoirs on the regularity and a priori estimates for quasilinear
elliptic PDEs with further applications to surfaces with a prescribed mean curvature. One
of the most remarkable results obtained by Bernstein was his famous theorem of 1915 (first
published in Communications of the Kharkov Mathematical Society) asserting that any
entire, i.e. defined in the whole plane R2, solution 𝑢(𝑥) of the minimal surface equation

div
𝐷𝑢√︀

1 + |𝐷𝑢|2
= 0, 𝑥 ∈ R2, (1)

must be an affine function, i.e. 𝑢 = 𝑎𝑥+ 𝑏𝑦 + 𝑐.
The Bernstein theorem is remarkable in many aspects. Unlike the classical Liouville

result on bounded harmonic functions, it claims that a solution must be ‘trivial’ (affine)
without any additional assumptions on the growth of a solution. Some possible explanation
of the latter phenomenon follows from the fact that the minimal surface equation is much
more symmetric than the Laplace equation. Indeed, equation (1) is invariant under the full
orthogonal group 𝑂(3) (rotations of R3), while the property of being a harmonic function is
invariant under the action of a smaller subgroup 𝑂(2) of rations of R2, i.e. a rotation of a
graph of a harmonic function in R3 is no longer harmonic. In particular, the large symmetry
group of (1) makes it possible to associate to any solution of (1) another a priori bounded
solution. More precisely, Bernstein remarks that 𝑣(𝑥) = arctan 𝜕𝑓

𝜕𝑥1
is always a (bounded!)
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solution to an elliptic linear equation. Then the claim follows by application of the Liouville
theorem proved by Bernstein four years earlier.

Unfortunately, this method does not give clues about possible generalizations of the
Bernstein result onto 𝑛-dimensional minimal hypersurfaces in R𝑛+1. The story of the Bern-
stein theorem for 𝑛 ≥ 2 and searching of counterexamples requires completely different
approaches and it is a fascinating part of the mathematical history including several brilliant
names as W.H. Fleming, H. Federer, E. De Giorgi, F.J. Almgren, M. Miranda, J. Simons,
E. Bombieri, E. Giusti, R. Osserman, J.C.C. Nitsche, L. Simon. We refer the interested
reader to a recent surveys of Leon Simon [45] and Mario Miranda [30] for the further
reading and more details. The result summarizing several papers states that the Bernstein
property (i.e. the claim that an entire solution to a certain second order elliptic type PDE
is an affine function) holds true for all dimensions 2 ≤ 𝑛 ≤ 7 and in the higher dimensions
𝑛 ≥ 8, there are nontrivial solutions of (1) over the whole R𝑛.

Although Bernstein’s problem has already been settled 50 years ago, it remains an
important cornerstone of analysis and geometry, a kind of incomprehensible and unattainable
beautiful Everest with immortal charm, attracting the constant attention of specialists. And
although we have today many answers, the key question remains unanswered: why does the
Bernstein property collapse in higher dimensions?

In this respect, the two-dimensional case takes a very special place. It is intimately
related to the fact that the two-dimensional Euclidean space has a natural complexification:

R2 ∼= C. (2)

The existence of the complex structure on R2 implies variety of different versions of the proof
and approaches to the Bernstein theorem in two dimensions. On the other hand, the complex
structure also implies the existence of the Weierstrass-Enneper parameterization and, as a
corollary, an exceptional variety of species in the two-dimensional minimal surface zoo.
More precisely, it has been proved by Weierstrass and Enneper (around 1863) that locally
any two-dimensional minimal surface is given by the real part of a certain holomorphic
curve. In other words, it can be parametrized by

𝑥(𝑧) = (Reφ1(𝑧),Reφ2(𝑧),Reφ3(𝑧)), (3)

where the triple of meromorphic functions φ𝑖(𝑧) on a Riemann surface satisfies

3∑︁
𝑖=1

φ′
𝑖
2
(𝑧) = 0.

Conversely, any such a triple generates a minimal surface. This representation makes the
similarity between harmonic (and meromorphic) functions in R2 and minimal surfaces in R3

more rigorous. For example, setting φ3 = 0 yields φ2 =
√
−1φ1(𝑧), hence

𝑥(𝑧) = (Reφ1(𝑧),− Imφ1(𝑧), 0)

becomes essentially the Cauchy — Riemann representation expressing that any harmonic
function 𝑢(𝑥1, 𝑥2) in a plane can be locally written as the real part of a holomorphic function.
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2. Nevanlinna theory on minimal surfaces

In the fall 1982, being a 2nd-year student, I started a project with Miklyukov on
properly immersed minimal surfaces in R3. Recall that the Bernstein theorem requires that
a minimal surface must be a graph over a whole plane. Miklyukov’s idea was to relax
the latter condition and replace it by an appropriate projection property, in other words,
to find a ‘quantitative’ Bernstein property. Miklyukov has always had incredible analytical
and geometrical intuition based, in particular, on his previous research on the regularity of
quasiconformal mappings and the classical function theory.

As an appropriate analogue of the projection property, Miklyukov thought to develop
the concepts of the counting function and the defect relations in the classical Nevanlinna
theory of meromorphic functions to immersed minimal surfaces. Recall that the Nevanlinna
theory describes the asymptotic distribution of solutions of the equation 𝑓(𝑧) = 𝑎, 𝑓(𝑧)
being a meromorphic function, as the value 𝑎 varies. Then the counting function is just the
logarithmic average number of solutions. A fundamental tool of the theory is the Nevanlinna
characteristic which accumulates both the counting function with the growth function (or
the proximity function). Taking into account the made above remark on the similarity
between holomorphic functions and minimal surfaces, the idea seemed very natural.

The counting function in the context of minimal surfaces is just the normalized average
over a circle of radius 𝑟 > 0 of the multiplicity of the orthogonal projection of a minimal
surface onto a fixed plane in R3. Thus, for the graph over a plane, the counting function is
just a constant equal to 1. Although the very close similarity between meromophic functions
and minimal surfaces, it was absolutely unclear how to adopt the analytical arguments for
functions (which have an algebra structure) to surfaces. A promising approach was to try
mixup the harmonicity of the coordinate functions on a minimal surface with some standard
tools of the classical function theory: the extremal length, variational capacity, the co-area
formula 1 and the fundamental frequency.

The capacity and fundamental frequency are quite standard instruments in potential
analysis and PDEs, while the concept of the extremal length comes from Teichmüller theory
of quasiconformal mappings and it is not as standard in PDEs. These tools has been
recently employed by Miklyukov in his elegant approach [3] to the Bernstein problem in
two dimensions. Some preliminary results obtained by him in this and a couple of others
papers suggested in particular that it is very natural to expect a ‘relaxed’ Bernstein property
for minimal quasigraphs. The idea was to connect the surface geometry to the counting
function by the well-known identity between extremal length and the conformal capacity,
since the latter could be effectively estimated on surfaces.

The first part of this project has been finished and submitted in May 1984, and pub-
lished three years later in [6] 2 , we were able to prove two results for different types of
projections. Here is the review from MathSciNet:

This article concerns the absence of nontrivial noncompact parametric minimal surfaces in
the Euclidean 3-space satisfying some additional geometrical properties. A typical known
result was the following. Let 𝑥 : 𝑀 → R3 be a 𝐶2 minimal imbedding of a noncompact
orientable 2-manifold. If 𝑥(𝑀) lies between two parallel planes and if the induced metric
on M is complete, then 𝑥(𝑀) is necessarily a plane ([L. P. de M. Jorge and F. V. Xavier,
Ann. of Math. (2) 112 (1980), no. 1, 203–206; MR0584079). Does the conclusion
still hold provided 𝑥(𝑀) only lies in a half-space (a problem stated by Calabi)? In this
connection, the authors assume that 𝑥 is proper and 𝑥(𝑀) lies in a half-space, say in
{𝑥3 > 0}. Properness implies that 𝑥(𝑀) is topologically complete (in R3), which is weaker
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than metric completeness. They also assume that the average number of intersection points
with 𝑥(𝑀) on a line parallel to the 𝑥3-axis passing through a generic point in {𝑥3 = 0}
situated at distance t from the origin is 𝑜(log 𝑡). They deduce the triviality of 𝑥, via a
“parabolicity” property of 𝑀 (equipped with the metric induced by 𝑥).

Reviewed by Philippe Delanoë

3. The Blue Notebook and the dimension 8

Another important motivation for that project was that Miklyukov aimed to achieve
a more conceptual explanation of the Bernstein property and to find a way to approach
minimal submanifolds in higher dimensions. The project required me to read extensively
from various fields including integral geometry, elementary geometric measure theory, value
distribution theory of meromorphic functions, manifold theory and Grasmannian geometry.
At that time I met with Miklyukov’s ‘blue notebook’.

It was an old-fashioned thick A5 notebook, with embossed TPECT on the cover and
filled with translations of various articles from English and German. One of the first was
a translation of a paper of Federer on geometric measure theory. Miklyukov showed me a
translation made in a red ink of the famous Milnor’s On manifolds homeomorphic to the
7-sphere [29]. The seven-page Milnor amazing proof was a virtuous combination of the
Morse theory, Thom’s cobordisms, and the quaternionions. He constructs his famous exotic
7-dimensional spheres 𝑀7

𝑘 as 𝑆3-bundles over 𝑆4 in a very explicit way using quaternionic
multiplication. The Morse theory then applies that the constructed 𝑀7

𝑘 must be homeomor-
phic to the standard sphere 𝑆7, while the λ-invariant may be different for distinct values of
𝑘. The latter implies the existence of different differentiable structures on 𝑆7.

I remembered this moment, because it was rather unusual situation. Miklyukov told
me that he believe that the breakdown of the Bernstein property in dimension 8 could have
a connection with the existence of the exotic structures for higher dimensional spheres and
the Bott periodicity. He sketched his motivation based on both formal and intuitive links and
subtle analogies between these two completely different worlds 3 . Some promising bridge
could be the 𝑁 -averages of the fundamental frequency defined and studied in [5]:

λα(𝐷,𝑁) = inf{ 1

𝑁

𝑁∑︁
𝑖=1

λα(𝐷𝑖) : ⊔𝑁
𝑖=1𝐷𝑖 ⊂ 𝐷}, (4)

where 𝐷 is an open domain of a Riemannian manifold 𝑀𝑛. One can easy to show that
λα(𝐷,𝑁) is increasing in 𝑁 . For 𝑀𝑛 = R𝑛 the structure of λα(𝐷,𝑁) is well understood
and an optimal lower estimate

λα(𝐷,𝑁) ≥ 𝑐𝑛(𝑁/|𝐷|)1/𝑛

holds. The most interesting nontrivial case of the Euclidean spheres 𝑆𝑛−1 ⊂ R𝑛 is more
subtle. There are still some analogues of the above lower estimate but they are not optimal
with respect to 𝑁 . The question is already very nontrivial for the two-dimensional sphere 4.

The essence of λα(𝐷,𝑁) comes from the following crucial observation made in [5]:
a sharp lower estimate for the average fundamental frequency of spheres implies sharp
versions of Liouville, Denjoy — Carleman — Ahlfors and Wiman type theorems for higher-
dimensional subsolutions of quasilinear ellitptic type equations on the corresponding man-
ifold. The minimal surface equation fits naturally in this class. The link between the
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existence of exotic spheres is more subtle but Miklyukov believed that it could be related to
the extremal combinatorial structure for the variational problem (4).

A noteworthy thing was that the idea had a clear algebraic tone, a rather unusual shade
for Miklyukov who seemed primarily an analyst and a geometer. It was quite obvious that
this idea was absolutely important and close for him. But the problem seemed much too
difficult and was actually a pure rhetoric problem: we had no idea how to get started.

4. Cubic cones enter the picture

Between 2003 and 2010, while a researcher at Royal Institute of Technology (Stock-
holm) I worked together Börn Gustafsson on a completely different project in complex
analysis: the Hele-Shaw problem, complex moments and meromorphic resultants, see his
nice review [16] about some of these developments. During Fall semester 2008, I switched
back to minimal surfaces and began my work on the Hsiang problem. Some preliminary
results were obtained during my train journeys between Stockholm and Uppsala, where I
temporarily taught at the Swedish National Graduate School in Mathematics and Computing
(FMB).

My interest to the Hsiang problem has been motivated by two principal questions:
a better understanding of the algebraic nature of the known examples of entire graphs in
dimensions ≥ 8 and generalizations of an example of a fourfold periodic minimal hypersur-
faces in R4 I discovered at that time, see [53]. This latter example was a logical sequel of
the three-dimensional double-periodic examples constructed earlier together with Vladimir
Sergienko [7; 43]. More precisely, the obtained fourfold periodic example was an embedded
minimal hypersurface with a 𝐷4-symmetry group and isolated singularities of the Clifford
cone type. Until recently, the only known non-trivial (i.e. distinct from cones) examples
of embedded minimal hypersurfaces in R𝑛+1 with finitely many isolated singularities were
constructed by Cafarelli — Hardt — Simon [11], N. Smale [46], and Harvey — Lawson [20].
Thus, the above 𝐷4-invariant minimal hypersurface was the first example of an embedded
minimal hypersurface with infinitely many isolated singular points. This naturally led to
the following question: given a lattice 𝐿 in R𝑛 and a fixed minimal cone 𝐾, is it possible
to construct an 𝐿-periodic embedded minimal hypersurface with isolated singularities of the
type 𝐾 at the points of 𝐿?

One obvious obstacle to this task was a shortage of available examples of minimal
cones. It is well-known that in any dimension 𝑛 ≥ 4 there exist exactly [𝑛−2

2
] non-congruent

quadratic minimal cones, all classified in a landmark paper of Wu-yi Hsiang [21] of 1967
published in the first issue of Journal of Differential Geometry. In the same paper, Hsiang
formulate several problems on general real algebraic minimal cones and by using invariant
theory constructs explicitly four new examples of cubic minimal cones in dimensions 𝑛 =
= 5, 8, 9 and 15. All the obtained (and known so far irreducible) examples of cubic minimal
cones satisfy the nonlinear 2nd order PDE

|𝐷𝑢|2Δ𝑢− 1
2𝐷𝑢 ·𝐷|𝐷𝑢|2 = θ|𝑥|2𝑢, 𝑥 ∈ R𝑛, (5)

where θ ∈ R is a structure constant. A cubic polynomial solution of (refradial) is said to be
a Hsiang eigencubic [50] (or radial eigencubic, REC for short, according [50]).

In general, an algebraic minimal cone of degree 𝑑 is determined by a homogeneous
polynomial solution 𝑢 of (5) with a certain homogeneous polynomial in 𝑥 of degree 2𝑑 − 4
instead of the quadratic from θ|𝑥|2 in the right hand side. The first nontrivial is the case
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of degree 𝑑 = 3 solutions of (5), but Hsiang remarks that ‘the algebraic difficulties involved
in such a problem are rather formidable’ and then asks to characterize at least all cubic
homogeneous polynomial solutions of (5) [21, p. 258, 265].

During 2008–2010, I obtained a particular solution of the Hsiang problem by applying
a rather straightforward approach and summarized in the preprint [51]. Among the results
obtained there, I mention the following:

i) Any Hsiang eigencubic 𝑢 is harmonic, unless it is trivial (i.e. congruent to the trivial
one-variable cubic polynomial 𝑎𝑥3

1 under an isometry of R𝑛).

ii) There is an infinite family of Hsiang eigencubics (called Clifford type eigencubics)
explicitly parameterized by symmetric Clifford systems.

iii) There are only finitely many non-Clifford type eigencubics (the so-called exceptional
eigencubics), and the the list of a priori possible dimensions was established.

iv) Any Hsiang eigencubic satisfies the cubic trace identity for its Hessian matrix: the
trace of the third power of the Hessian of 𝑢 is proportional to 𝑢, i.e.

tr(𝐷2𝑢)3 = 𝑎𝑢,

where 𝑎 ∈ R contains a certain intrinsic invariant information about 𝑢.

v) An eigencubic 𝑢 is exceptional if and only if it satisfies the second order identity:

tr(𝐷2𝑢)2 = 𝑐|𝑥|2.

In fact, there are four eigencubics (coming from trialities) that are intermediate be-
tween Clifford type and exceptional, the so-called mutants, which satisfy both the
quadratic trace identity and Clifford type representation.

vi) A new example of an exceptional eigencubic in dimension 21 was constructed by using
the octonion algebra. The corresponding Hsiang eigencubic is simply the following
real part:

𝑢(𝑥) = Re(𝑤1𝑤2𝑤3),

where 𝑥 = (𝑤1, 𝑤2, 𝑤3) with 𝑤𝑖 being three independent imaginary octonions in
ImO ∼= R7.

Some remarks are in order here. First, the harmonicity of nontrivial Hsiang eigen-
cubics is a rather striking property which means that any eigencubic satisfies in fact to a
system of two second order PDEs. Unfortunately, the available proofs of this property do
not shed light on a conceptual understanding why this extra PDE constraint does actually
hold. It is unclear neither if an analogous phenomenon holds for eigencubics of higher
degrees. Next, the definition of an exceptional Hsiang eigencubic is somewhat negative,
thus nonconstructive, hence it was very desirable to find any constructive way to distinguish
exceptional eigencubics from eigencubics of Clifford type. In this respect, the result refitem5
plays the fundamental role.

The finiteness result refitem3 is very striking and one immediately recognizes here
a parallel between the above dichotomy (Clifford vs exceptional) and classical dichotomies
‘regular vs exceptional (or sporadic)’ in simple Lie algebras, finite simple groups, ADE-
classification of singularities etc. Even we know today that Hsiang eigencubics have close
connections with Clifford and Jordan algebras, and, thus, to classification of simple Lie
groups, this phenomenon is not completely clear and requires a further study. I mention
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also an interesting interplay between refitem5 and the Killing Einstein property studied very
recently in important works of Daniel J.F. Fox [15].

Finally note that both refitem4 and refitem5 provide us with simple effective algorith-
mic tools for identifying an eigencubic and its type (in particular, the constant 𝑐 in refitem4
contains a lot of intrinsic information about 𝑢 and its geometry).

The above results were partially published in [50] (the classification of the Clifford
type examples in ii)) and in [49] (a preparatory key result for the proof of iii) generalizing
a Cartan theorem has been established).

The proof of the finiteness result iii) relies on the famous Hurwitz — Radon theorem
which characterizes the possible dimensions of composition of quadratic forms [44]. More
precisely, the classical Euler four-square and Degen eight-square identities generalize the
well-known multiplicative relationships between sums of squares in two variables

(𝑥2
1 + 𝑥2

2)(𝑦
2
1 + 𝑦22) = (𝑥1𝑦1 − 𝑥2𝑦2)

2 + (𝑥1𝑦2 + 𝑥2𝑦1)
2.

Then the Hurwitz — Radon theorem asserts that an identity of the kind

(𝑥2
1 + . . .+ 𝑥2

𝑝)(𝑦
2
1 + . . .+ 𝑦2𝑞 ) = 𝑏1(𝑥, 𝑦)

2 + . . .+ 𝑏𝑝(𝑥, 𝑦)
2

is possible for some bilinear forms 𝑏𝑖 if and only if 𝑞 = ρ(𝑝), where the Hurwitz — Radon
function ρ is defined by

ρ(𝑚) = 8𝑎+ 2𝑏, if 𝑚 = 24𝑎+𝑏 · odd, 0 ≤ 𝑏 ≤ 3. (6)

This in particular implies the finiteness of exceptional eigencubics and also imposes obstruc-
tions on their possible dimensions.

Remark 1. In November 2010, I learned from Prof. Zizhou Tang on the 1993 paper 5 (in
Chinese) [39] of Peng Chin-Kuei and Xiao Liang where they proved ii)–iii) using a similar
approach but under an additional assumption that an eigencubic is harmonic, i.e. a priori
requiring refitem1 as a condition. To my knowledge this is the only work on the Hsiang
problem which provides a particular classification similar to the above.

5. Nonassociative algebras of cubic forms

Thus, the most difficult part of the Hsiang problem is to determine which of the
feasible dimensions are actually realizable. For anyone who tried to deal with this problem,
it became clear that at a certain stage any further progress faced numerous analytical
and algebraic obstacles, thus an alternative, more transparent and conceptual, approach
was required. To achieve a complete classification and better understanding of exceptional
eigencubics, the straightforward approach of [51] was insufficient. It gives no good idea
why the Clifford and Jordan algebra structures may arise in the context of cubic minimal
cones, or at least in the context of the Hsiang equation (5).

On the other hand, some hints were already in the above results. First, an easy
calculation reveals that any cubic form satisfying the Cartan — Münzner system

|𝐷𝑢(𝑥)|2 = 9|𝑥|4, (7)

Δ𝑢(𝑥) = 0 (8)
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also satisfies the radial eigencubic equation (5). Recall that the latter system appears
naturally in the context of isoparametric 6 hypersurfaces in the spheres. Cartan in 1938
established in [12] that there exists exactly four congruency classes of such solutions.

These Cartan isoparametric cubics play a dual role in the classification refitem1–
refitem6. First, they are simplest exceptional eigencubics corresponding to the Peirce pa-
rameter 𝑛2 = 0. On the other hand, the restriction of any eigencubic with 𝑛2 ̸= 0 on a
certain subspace is always a Cartan isoparametric cubic. The latter property together with
the classification result in [49] were key ingredients in the proof of the finiteness result
refitem3 above.

Another remarkable observation is that any Cartan isoparametric cubic is the generic
norm in the trace-free subspace of an appropriate simple rank 3 formally real Jordan algebra
(see for example [47]). The simplest model of a Jordan algebra (and actually one half of
possible examples) is the algebra of all real 𝑛 × 𝑛 symmetric matrices with the Jordan
multiplication

𝐴 ∘𝐵 =
1

2
(𝐴𝐵 +𝐵𝐴).

Then 𝐴2 = 𝐴 ∘ 𝐴 = 𝐴∘2. Thus defined algebra is commutative but nonassociative. But one
can easily verify that thus defined multiplication satisfies the Jordan identity

𝐴2 ∘ (𝐴 ∘𝐵) = 𝐴 ∘ (𝐴2 ∘𝐵).

An important property of a Jordan algebra is its power associativity, i.e. any power of a
single element 𝐴 is well-defined and does not depend on associations. It is not difficult to
see that any element 𝐴 satisfies a polynomial identity (an analogue of the Cayley-Hamilton
polynomial) of degree ≤ 𝑛. The rank of 𝐴 is just the smallest possible degree of the
annihilating polynomial. One can define the trace of 𝐴 and the generic norm of 𝐴 which
is just the determinant of 𝐴. For a general Jordan algebra, the construction is in the same
spirit but more involved. The reader is referred to [14; 26; 42] for a more detailed explanation
of the concepts discussed here and below.

Therefore one led to the following natural question: What conceptually the analytical
structure of Cartan isoparametric cubics (emerging from certain PDEs) has to do with a
degree three Jordan algebra structure?

One possible answer is suggested in my paper [52], where a one-to-one correspondence
between cubic homogeneous polynomial solutions to a general eiconal equation (generalizing
(7)) and degree 3 semi-simple Jordan algebras was defined. Let us briefly explain some
underlying ideas of this correspondence.

First, one associate to any triple consisting of a vector space 𝑉 , a cubic form 𝑢 and
a nondegenerated bilinear form ⟨; ⟩ on 𝑉 , a commutative nonassociative algebra structure
𝑉 (𝑢) in such a way that the algebra multiplication is weakly associative. The latter means
that the identity

⟨𝑥𝑦; 𝑧⟩ = ⟨𝑥; 𝑦𝑧⟩ (9)

holds for any 𝑥, 𝑦, 𝑧 ∈ 𝑉 . More precisely, the multiplication (𝑥, 𝑦) → 𝑥𝑦 is simply defined
as the unique element 𝑥𝑦 satisfying

⟨𝑥𝑦; 𝑧⟩ = 𝑢(𝑥; 𝑦; 𝑧)

for all 𝑧 ∈ 𝑉 , where 𝑢(𝑥; 𝑦; 𝑧) is the complete linearization of 𝑢, i.e. the unique symmetric
linear form satisfying

𝑢(𝑥;𝑥;𝑥) = 6𝑢(𝑥).
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Thus defined multiplication is obviously commutative and satisfies (9). An elementary but
crucial corollary of (9) is that the multiplication operator 𝐿𝑥 is self-adjoint, thus, it has a
real spectrum and diagonalizable.

Recall that an idempotent of an algebra A is an element 𝑐 with the property 𝑐2 = 𝑐.
The spectrum of 𝐿𝑐 is called the spectrum of the idempotent 𝑐. To any idempotent one
associates the orthogonal decomposition (called the Peirce decomposition)

A =
𝑘⨁︁

𝑖=1

A𝑐(λ𝑖)

of A into eigensubspaces A𝑐(λ𝑖), i.e. 𝐿𝑐 = λ𝑖 on A𝑐(λ𝑖). If the bilinear form ⟨; ⟩ is weakly
associative and positive definite, one can prove by a variational argument (see [55]) that
the algebra A necessarily contains nonzero idempotents. Indeed, any idempotent in such
an algebra is (proportional to) a stationary point of the cubic form 𝑢(𝑥) on the unit sphere
⟨𝑥;𝑥⟩ = 1 which is a compact set.

The weak-associativity (9) plays a prominent role in the Jordan algebra theory, with
the associating bilinear form being the generic trace form

τ(𝑥, 𝑦) = tr𝐿𝑥𝐿𝑦,

where
𝐿𝑥 : 𝑦 → 𝑥𝑦

is the (left) multiplication operator on an algebra. However, there is a crucial difference
between the two constructions. In the Jordan algebra theory, the trace form τ is determined
by the multiplication structure and the Jordan identity

[𝐿𝑥2 , 𝐿𝑥] = 𝐿𝑥2𝐿𝑥 − 𝐿𝑥𝐿𝑥2 = 0

implies that the trace form is weak associative, see [14; 26]. On the contrary, the product
in the algebra 𝑉 (𝑢) of a cubic form 𝑢 is recovered from 𝑢 by virtue of the inner product
of 𝑉 given by the bilinear form ⟨; ⟩ such that the latter form becomes weak associative by
its very definition. Therefore, the algebra 𝑉 (𝑢) does not satisfy a priori any identity (like
Jordan algebra identity).

A correspondence between the analytical and the algebraic sides of 𝑉 (𝑢) is obtained as
follows. It follows from ythe above definitions that the multiplication in 𝑉 (𝑢) is completely
determined by the (polarization of) the gradient or the Hessian of 𝑢. More precisely,

𝑥𝑦 = 𝐷2𝑢(𝑥)𝑦.

Then the Euler homogeneity theorem implies

𝑥𝑥 = 𝑥2 = 𝐷2𝑢(𝑥)𝑥 = (deg 𝑢)∇𝑢(𝑥) = 2∇𝑢(𝑥),

i.e. the gradient of 𝑢 at 𝑥 is 𝑥2 up to a constant factor.
Thus, any PDE relation on 𝑢 immediately gives rise to an algebra identity on 𝑉 (𝑢).

This is another important ingredient of our approach. For example, Applying this construc-
tion to the Hsiang equation (7), and using the fact that the gradient ∇𝑢(𝑥) = 𝑥2/2 one
obtains

⟨𝑥2;𝑥2⟩ = 36⟨𝑥;𝑥⟩2 (10)
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With such an algebra structure in hand one is able to completely classify cubic solutions
a general eiconal equation (generalizing (7) for an arbitrary Riemannian structure) and rely
it to Jordan algebras. Then the Freudenthal — Springer — McCrimmon [26] construction of
an Jordan algebra from an admissible cubic form bridges these different contexts. The most
nontrivial part of the latter construction is to identify and to establish that the a certain
one-rank perturbation of a cubic solution of (7) is actually admissible. The most cubic forms
are not admissible, but if one is lucky and such a form is found, the rest is just to follow a
certain elementary algorithm [26, p. 77].

6. Hsiang algebras

The above correspondence has proved very effective for the 1st order PDE, eiconal
equation, and thus, for all exceptional Hsiang algebras of Cartan type. This opened a door
for a purely algebraic approach to tackle the general Hsiang problem. To extend the ap-
proach on an arbitrary Hsiang eigencubic, some further ingredients and techniques were
needed. The most important part comes also from Jordan algebra theory and is known
as the Peirce decomposition. It allows to identify a finer algebra structure by virtue of
multiplication rules between the so-called Peirce subspaces (the eigensubspaces of the mul-
tiplication operator by an idempotent). This method goes back to classification of associative
algebras (hypercomplex number systems) in the work of the greatest nineteenth-century
American mathematician Benjamin Peirce (1809–1880) [38]. In 1930s, the method has
been masterly applied by P. Jordan, J. von Neumann and E. Wigner in their seminal work
on formally real Jordan algebras [24] and developed further in a series of landmark papers
of Adrian Albert [8].

Applying the above construction to the Hsiang equation (5) yields similarly

⟨𝑥2;𝑥2⟩ tr𝐿𝑥 − ⟨𝑥2;𝑥3⟩ = 2
3θ⟨𝑥;𝑥⟩⟨𝑥

2;𝑥⟩. (11)

A Hsiang algebra is by definition any commutative algebra A with a weakly associative
positively definite form ⟨; ⟩ and satisfying (11).

The correspondence between a Hsiang algebra and a solution of (5) is given by

𝑢(𝑥) =
1

6
⟨𝑥;𝑥2⟩.

Thus, any Hsiang algebra produces a solution of (5), and conversely, any solution 𝑢 deter-
mines a Hsiang algebra A = 𝑉 (𝑢).

A Hsiang algebra is said to be trivial if its multiplication has rank one, i.e. dimAA = 1.
On the level of cubic forms this means that the cubic form 𝑢 is essentially one-dimensional:
𝑢(𝑥) is 𝐶𝑥3

1 in some orthogonal coordinates.
We describe very shortly some basic ideas and results following [32, Chapter 6], [58]

(the full account can be found in the unpublished preprint [54]).
The first step is to show that for any nontrivial Hsiang algebra A there holds tr𝐿𝑥 =

= 0, i.e. the cubic form 𝑢(𝑥) is harmonic. The proof relies on the so-called minimal
(extremal) idempotents, see for example [56]. More precisely, one can prove that any algebra
carrying a positive definite weakly associative bilinear form always has nonzero idempotents.
Furthermore, for any idempotent 𝑐 of the minimal possible length, the nontrivial part of
its spectrum (i.e. the spectrum on the orthogonal complements to the one-dimensional
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eigensubspace spanned by 𝑐) is a subset of (−∞, 1
2
]. Combining this with the defining

relation (11) one is able to show the trace free property.
Now, recall that the classical Peirce approach works well for algebra identities of degree

at most three or for at most three different Peirce numbers. For example, coming back to
isoparametric Cartan cubic algebras, the Peirce spectrum contains essentially two elements
(distinct from the trivial eigenvalue 1) with simple fusion rules. This makes it easy to get a
complete classification (see § 3 in [57]). A similar situation occurs for classical (formal real)
Jordan algebras or axial algebras of Jordan type [18; 19]. Axial algebras with η = 1

2
have

a singular behaviour and require more work. Note also that the Peirce value 1
2

appears and
plays a crucial role in the classification of nonassociative algebras associated with Hsiang
exceptional eigencubics. In fact, this Peirce number is remarkable in many aspects and
indicates that an algebra must satisfy to a specific algebra identity, see [25; 56].

For identities of degree higher than three, like (11), the situation is completely different.
Some examples of such algebras are structurable algebras [9], baric algebras of degree [37],
and Majorana algebras of the Monster type [22]. In the latter case, the algebras have four
distinct Peirce numbers whose fusion rules have a natural Z2-grading. The full classification
of all subalgebras is an important project with many potential applications to finite simple
group theory, see [23].

But, for the Hsiang algebras the situation is more complicated because their Peirce
structure is not graded. Still, it has some very nice properties. First, all idempotents
in a Hsiang algebra has the same length, and, what is more important, the same Peirce
spectrum. The latter property is rather extraordinary, because there are no other examples
of this kind except Hsiang algebras known. The Peirce triple

(𝑛1, 𝑛2, 𝑛3) = (dim𝑉𝑐(−1), dim𝑉𝑐(−
1

2
), dim𝑉𝑐(

1

2
))

essentially determine the structure of a Hsiang algebra.
Furthermore, given an idempotent 𝑐 ∈ 𝑉 , there are two Peirce subspaces which are

subalgebras of the ambient algebra. It turns out that one can deform the original multiplica-
tion in these subalgebras such that some hidden algebra structures become visible: a Clifford
algebra structure on 𝑉𝑐(1)⊕𝑉𝑐(−1) (constructed ad hoc) and a formally real Jordan algebra
structure Λ𝑐 on 𝑉𝑐(1) ⊕ 𝑉𝑐(−1

2
) (obtained by using the Freudenthal-Springer-McCrimmon

construction). Manipulating with this structures in hands, one can establish the basic clas-
sification including refitem1–refitem6 by pure algebraic means.

To absorb exceptional algebras, one establishes the following result: the Jordan algebra
structure Λ𝑐 on 𝑉𝑐(1)⊕𝑉𝑐(−1

2
) is that it is simple if and only if the ambient Hsiang algebra

is exceptional. The simple formally real Jordan algebras are well-known since the celebrated
classification of P. Jordan, J. von Neumann and E. Wigner Jordan algebras [24]. Since one
also has an additional obstruction coming form the existence of Clifford algebra structure
on 𝑉𝑐(1) ⊕ 𝑉𝑐(−1), one is able to deduce the finiteness of admissible Peirce triples for
exceptional algebras. Those are displayed in Table reftabs below.

Thus, the proposed program also yield some further results on Hsiang eigencubics, but
an ultimate classification required a deeper insight into the structure of exceptional eigen-
cubics. The most difficult part of the program was (and is) to eliminate ‘false’ exceptional
Hsiang algebras from the list predicted by refitem3 and displayed in Table reftabs. To this
aim, I developed in 2014 a next important ingredient, the so-called tetrad decomposition.
This technique seems to me especially important for some further applications even beyond
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the Hsiang problem. In short, the idea is as follows. We already seen above that the Peirce
subspace 𝑉𝑐(1)⊕ 𝑉𝑐(−1

2
) can be deformed into a Jordan algebra Λ𝑐. The algebra multiplica-

tion on Λ𝑐 is different from (but isotopic to) the original multiplication on 𝑉 ; more precisely
it is a rank one deformation of the latter. The Jordan structure on Λ𝑐 makes visible some
hidden structures in 𝑉 . For example, the idempotent 𝑐 is the unit in Λ𝑐 and any nontrivial
(distinct from zero and unit) idempotent in Λ𝑐 is an absolute nilpotent (square zero elements)
in 𝑉 , and vice versa. On the Jordan algebra level it is well-known that for any primitive
idempotent (i.e. one which cannot be written as a sum of non-zero idempotents) in Λ𝑐 gives
rise to a Jordan frame. The latter is just a partition of the Jordan algebra unit into orthogo-
nal primitive idempotents (played an important tool in the spectral theory of Jordan algebras
by P. Jordan, J. von Neumann and E. Wigner). This establishes a natural connection these
two structures.

The a priori admissible dimensions dim𝑉 and the Peirce triples
(𝑛1, 𝑛2, 𝑛3) = (dim𝑉𝑐(−1), dim𝑉𝑐(− 1

2
),dim𝑉𝑐(

1
2
)) of exceptional algebras

dim𝑉 5 8 14 26 9 12 15 21 15 18 21 24 30 42 27 30 33 36 51 54 57 60 72

𝑛1 2 3 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7

𝑛2 0 0 0 0 5 5 5 5 8 8 8 8 8 8 14 14 14 14 26 26 26 26 26

𝑛3 2 4 8 16 3 5 7 11 6 8 10 12 16 24 12 14 16 18 24 26 28 30 38

By using the tetrad decomposition, one can show that some Peirce dimensions in the
above table are not realizable. This eliminates the Perice triples (𝑛1, 𝑛2, 𝑛3) with values
(2, 5, 7), (2, 8, 10), (2, 14, 16), (3, 14, 18), (0, 26, 24), (2, 26, 28), (3, 26, 30) and (7, 26, 38).
All triples with 𝑛2 = 0, 𝑛1 = 0 and 𝑛2 ̸= 26, 𝑛1 = 1 and (𝑛1, 𝑛2, 𝑛3) = (4, 5, 11) are
realizable, see the description below:

• If 𝑛2 = 0 then the corresponding Hsiang algebras are the contractions of the algebra of
the cubic form 𝑢 = 1

6
⟨𝑧; 𝑧2⟩ on the trace free subspace of the Jordan algebra H3(K𝑑)

of 3× 3 Hermitian matrices over a real division algebra K𝑑 of dimension 𝑑 = 1, 2, 4, 8.

• If 𝑛1 = 0 then 𝑛2 ∈ {5, 8, 14} and the corresponding Hsiang algebras are the algebras
of cubic forms 1

12
⟨𝑧2; 3𝑧 − 𝑧⟩, where 𝑧 → 𝑧 is the natural involution on 𝑉 = H3(K𝑑),

𝑑 = 2, 4, 8.

• If 𝑛1 = 1 then 𝑛2 ∈ {5, 8, 14, 26} and the corresponding Hsiang algebras are the
algebras of cubic forms 𝑢(𝑧) = Re⟨𝑧; 𝑧2⟩ on the complexification H3(K𝑑) ⊗ C, 𝑑 =
= 1, 2, 4, 8.

• If (𝑛1, 𝑛2) = (4, 5) then 𝑉 is the algebra of cubic form 𝑢 = 1
6
⟨𝑧; 𝑧2⟩ on the contraction

of the Albert algebra on the purely imaginary subspace: H3(K8)⊖ H3(K1).

The three remained triples with 𝑛2 = 8 are still an open problem.
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Conclusion

When I returned from military service in 1988, Miklyukov was completely passionate
about the string theory and its connections to zero mean curvature surfaces in Lorenz spaces
which has been his principal and very fruitful direction during the 1990s. Together with his
students (primarily the twin brothers Vladimir Klyachin and Alexei Klyachin) he published
a series of very deep existence and regularity results on maximal surfaces.

We together came back to our project on harmonic functions on Riemannian manifolds
and external structure of minimal surfaces later, in the mid of 1990s. We were able to relax
the entire graph condition in the Bernstein result for slowly growing multiplicities by using
the fundamental frequency technique. This became our third and the last join paper [28].

The fundamental frequency technique is very powerful and not yet fully used method
with many potential applications. For example, in 2005 I developed some of our ideas in
[6] and [28] to apply them to the Meeks problem on disjoint minimal graphs. The main
result of [48] states that there may be at most 3 minimal graphs supported on disjoint
domains of R2 (Meeks and Rosenberg conjectured in [27] that the optimal number must
be 2, which remains an open problem). Both the two- and higher-dimensional cases have
natural connections to the Bernstein property. A better understanding of this point in the
2D and higher-dimensions is an ongoing project with Luciano Mari, SNS, Pisa.

The ultimate classification of nonassocaitive algebras of cubic minimal cones is still
an incomplete project but a complete picture seems clear. A interesting and deep direction
here is a better understanding of general metrisable algebras and their Peirce structure in
different differential geometric and group theoretic contexts [15; 17; 23; 25].

Coming back to the central question about a possible connection between the existence
of Milnor’s spheres and the breakdown of the Bernstein property, we have to recognize that
we still don’t understand the essence of the matter. On the other hand, the algebraic struc-
tures appeared in the study of minimal cones have a very close relation to the algebraic part
of the Milnor construction. Perhaps, the answer could be found from a better understanding
of the unusual (Hölder continuous) viscosity solutions constructed very recently by Nikolai
Nadirashvili and Serge Vlăduţ [33–36], and also in [31; 32] by using certain nonassociative
algebra structures. Remarkably, the zero varieties of these solutions are minimal cones but
no conceptional explanation for this fact is known so far.

REMARKS

1 Miklyukov used to refer to the coarea-formula as the Kronrod-Federer formula, according
to the original Russian edition of the book of Burago and Zalgaller [10].

2 Submission and publication of this paper coincided with the most difficult period of
Miklyukov, between 1985 and 1989, who lost his position as Chair of Mathematical Analysis
and Function Theory (the chair itself has been abolished in 1985), it is a long different story.
Miklyukov was returned to the title of professor in 1988, and the chair was returned its name
only in 1992. It took almost four years to publish our paper [6], there were two negative
reviews written by ‘colleagues’, but then the situation changed mysteriously and we got a
positive review. During that period, I finished the last year of university, then served a year and
a half in the army, and even entered my PhD program.

3 Much latter I found an interesting collection of around 80 different sources, papers and
links on ‘Eight in algebra, topology and mathematical physics’ on Andrew Ranicki’s homepage
[40].

4 I just remark that another very context where λα(𝐷,𝑁 naturally appear is to the nodal
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level sets of the 𝑘th eigenfunction of the Laplacian operator on compact manifolds. However, a
connection between 𝑘 and 𝑁 is unclear for general 𝑛 ≥ 2.

5 I would like to thank Prof. Yan Wenjiao for sending me a copy of this paper.
6 A hypersurface is called isoparametric if it has constant principal curvatures [13].
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Аннотация. В этой работе дается краткий обзор общей картины и по-
яснения некоторым последним исследованиям в области теории алгебраиче-
ских минимальных конусов и неассоциативных алгебр. Часть этой статьи —
воспоминания о сотрудничестве автора с его учителем, научным руководите-
лем и коллегой Владимиром Михайловичем Миклюковым при исследовании
вопросов, связанных с минимальными поверхностями, которое мотивировало
нынешнее исследование.
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