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Abstract. The aim of the present research article is to discuss the f-
Kenmotsu manifolds with respect to a semi-symmetric non- metric connection
conceding an m-Ricci soliton and gradient Ricci soliton. Moreover, we prove that
the second order symmetric tensor is a constant multiple of the metric tensor and
parallel with respect to the semi-symmetric non-metric connection. In addition,
we illustrate an example to exhibit that 3-dimensional f-Kenmotsu manifolds with
a semi-symmetric non-metric connection concede an expanding m-Ricci soliton.
Finally, it is shown that locally ¢-symmetric 3-dimensional f-Kenmotsu manifolds
with a semi-symmetric non-metric connection concede a gradient Ricci soliton.
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Introduction

The concept of f-Kenmotsu manifold, where f is a real constant, appears for the first
time in the paper of D. Jannsens and L. Vanhecke [12]. More recently, Z. Olszak and
R. Rosca [15] defined and studied the f-Kenmotsu manifold by the formula (17), where f
is a function on M such that df An = 0. Here, n is the dual 1-form corresponding to
the characteristic vector field & of an almost contact metric structure on M. The condition

§ df Amn = 0 follows in fact from (17) if dim M > 5. This does not hold in general if
0 dim M = 3.

In 1924, A. Friedmann and J.A. Schouten [10] introduced the idea of a semi-symmetric
~ linear connection. A linear connection V is said to be a semi-symmetric connection if its
5 torsion tensor 7' is of the form

© Siddiqi M.D

T(X,Y)=n(Y)X —n(X)Y, (1)
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where 1 is a 1-form. The connection V is symmetric if the torsion tensor 7" vanishes, other-
wise, it is non-symmetric. The connection V is metric connection if there is a Riemannian
metric g in M such that Vg = 0, otherwise it is non-metric. It is well known that a linear
connection is symmetric and metric if and only if it is the Levi — Civita connection. Some
properties of semi-symmetric non-metric connection were studied M. Ahmad et al. and
Siddiqi et al. in (see [1;2;17;19]) respectively.

In 1988, R. Hamilton [11] and in 2003, G. Perelman [16] studied the solution of the
Poincare conjecture in dimension 3 have produced a flourishing activity in the research
of self similar solutions, or solitons, of the Ricci flow. The study of the geometry of
solitons, in particular their classification in dimension 3, has been essential in providing a
positive answer to the conjecture; however, in higher dimension and in the complete, possibly
noncompact case, the understanding of the geometry and the classification of solitons seems
to remain a desired goal for a not too proximate future. In the generic case a soliton
structure on the Riemannian manifold (M, g) is the choice of a smooth vector field X on M
and a real constant A satisfying the structural requirement

1
Ric —|—§£Xg = Ag, (2)

where Ric is the Ricci tensor of the metric g and Lxg is the Lie derivative of this latter in
the direction of X. In what follows we shall refer to A as to the soliton constant. The soliton
is called expanding, steady or shrinking if, respectively, A > 0, A = 0 or A > 0. When X is
the gradient of a potential P € C'°(M), the soliton is called a gradient Ricci soliton and the
previous equation (1) takes the form

VVYy =S +Ag, where Hessip=VV. (3)
Both equations (1) and (2) can be considered as perturbations of the Einstein equation
Ric = Ag. (4)

and reduce to this latter in case X or Vi are Killing vector fields. When X = 0 or 1 is
constant we call the underlying Einstein manifold a trivial Ricci soliton.

R. Sharma [18] initiated the study of Ricci solitons in contact Riemannian geometry .
After that, Tripathi [20], Nagaraja et. al. [14] and others like C.S. Bagewadi et. al. and
also M. Turan et al. ([3], [21]) extensively studied Ricci solitons in manifolds with different
structures.

In 2009, J.C. Cho and M. Kimura introduced the notion of n-Ricci soliton [9] which
was treated by C. Calin and M. Crasmareanu on Hopf hypersurfaces in complex space forms
[6]. A Riemannian manifold (M, g) is called a n-Ricci soliton if there exist a smooth vector
field & such that the Ricci tensor satisfies the following equation [7]

28 + Leg+2Ag +2un ®@n = 0, (5)

where L; is the Lie derivative operator along the vector field &, S is the Ricci tensor and A,
u are real constants. If u = 0, then n-Ricci soliton becomes Ricci soliton.

Later n-Ricci solitons in para-Kenmotsu manifolds [5] and Lorentzian para-Sasakian
manifolds [4] have been studied by A. M. Blaga et al. In [7] C. Calin and M. Crasmareanu
studied Ricci soliton in f-Kenmotsu manifols . Moreover, in [22] A. Yildiz et al. studied
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studied 3-dimenional f-Kenmotsu and Ricci-soliton. Recently in 2018, D. Chakraborty
et al. [8] studied Ricci soliton on 3-diemnensional -Kenmotsu manifold with respect to
Schouten-van Kampen connection. Motivated by these studies in the present paper, we study
n-Ricci solitons and gradient Ricci soliton in f-Kenmotsu manifold with a semi-symmetric
non-metric connection.

1. Preliminaries

Let M be a 3-dimensional differentiable manifold with an almost contact metric struc-
ture (¢, &,m,g) consisting of a (1,1) tensor field ¢, a vector field & a 1-form 1 and
Riemannian metric g such that

P*=-X+nX)E nE) =1, nodp=0, ¢&=0, (6)

9(dX,9Y) = g(X,Y) =n(XIn(Y), n(X) = g(X.¢), (7)
for all X, Y € x(M). Also, for an almost contact manifold M, it follows that [13]

Vx¢Y = (Vxd)Y + d(VxY), (8)

(Vxn)Y = Vxn(Y) —n(VxY). (9)

Let R be Rieammian curvature tensor, S Ricci curvature tensor, ¢) Ricci operator and
{e1, €9, ....e,,} be orthonormal basis of M. For all X,Y € x(M) it follow that

S(X.Y) =3 g(Rlen X)Yiey) (10
=1
=1
and
S(X,Y) = g(QX,Y). (12)

If the Ricci tensor S of an f-kenmostsu manifol M satisfies the condition
S(X,Y) = ag(X, X)Y + n(X)n(Y), (13)
where a,b are scalars, then M is said to be n-Einstein manifold. If b = 0, then M is

called Einstein manifold. In a 3-dimensional Riemannian manifold the curvature tensor R
is defined as

R(X,Y)Z =58(Y,2)X — g(X, Z2)QY + g(Y, Z)QX — S(X, 2)Y, (14)
50V, 2)X — (X 2)Y],

where S is the Ricci tenosr, ) is the Ricci operator and r is the scalar curvature for
3-dimensional manifold M.
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On the other hand, let M be an n-dimensional Riemannian manifold with the Rie-
mannian connection V. A linear connection V on M is said to be semi-symmetric metric
connection if its torsion tensor 1" of the connection V satisfies

T(X,Y)=n(Y)X —n(X)Y, (15)
where 1 is non-zero 1-form and T # 0.
Moreover, Vg = 0 then the connection is called a semi-symmetric metric connection.
If Vg # 0 then the connection is called a semi-symmetric non-metric connection [10].
For n > 1, M is called projectively flat if and only if the well known projective
curvature tensor p vanishes. Projective curvature tensor P is defined by

P(X,Y)Z =R(X,Y)Z — %[S(Y, Z)X — S(X, 2)Y] (16)

for any X,Y,Z € x(M), where R is the curvature tensor and S is the Ricci tensor of M
[13]. P(X,Y)& =0 for any X,Y € x(M), then manifold M is called &-projective flat [12].

2. f-Kenmotsu manifolds

Let M be a 3-dimensional almost contact manifold. (M, ¢, é&,1,g) is an f-Kenmotsu
manifold if the covariant differentiation of ¢ satisfies [12],

(Vxd)Y = f(g(¢X,Y) —n(Y)X) (17)

where f € C°(M) such that df An=0. If f = = const # 0, the manifold is said to be
an (-Kenmotsu. If f = 1, then 1-Kenmotsu manifold is also called Kenmotsu manifold. If
f?+ f' #0, then f-Kenmotsu manifold is said to be regular, where f' = &f [12]. By using
(6) and (7), it can be shown that

(V)Y = fg(oX, dY). (18)
From (3.1), we have
Vx& = f(X —n(X)E). (19)
Also from (2.8), in 3-dimensional f-Kenmotsu we have
R(X,Y)Z = (g+2f2+2f’)(XAY)— (20)

—(5+ 37+ 3 )MOEAY)Z +n(Y)(X A E)Z]

and

SOLY) = (5 +2f2 +2)g(X,Y) = (5 +3f7 + 3 (X (V). (21)
Thus from (21), we get
S(X,&) = =2(f*+ f';(X) (22)
Using (20) and (21), we obtain
R(X,Y)E=—(f2+ f)n(Y)X —n(X)Y], (23)
R(‘E’X)E:_(f2+f/)[n(X)‘i_X]7 (24)
QX = (5+2/* +2f)X — (5 + 3 + 3/ m(X)E. (25)

[t can be easily checked out from (16) by using (23) and (22) that a 3-dimensional
f-Kenmotsu manifold is always &-projectively flat [12].
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3. f-Kenmotsu manifolds with semi-symmetric non-metric connection

Let V be a linear connection and V be a Riemannian connection of an f-Kenmotsu
manifold M. This V linear connection defined by

VxY =VxY +n(Y)X (26)

where n-1-form and any vector fields X, Y € x(M), denotes the semi-symmetric non-metric
connection [10].

For f-Kenmotsu manifold with the semi-symmetric non-metric connection, using (7), (17)
and (26) we have

Vi)Y = f(g(¢X, $Y)E — n(X)$X) (27)

for any vector fields X,Y € x(M), where ¢ is (1,1) tensor filed, & is a vector filed, 1 is a
1-form and f € C'*° such that df An = 0. As consequence of df An =0, we get

df = ' and X(f) = fn(X) (28)

where [/ = &f. If f = B = constant # 0, then the manifold is a p-Kenmotsu [13]. If
f = 0, then the manifold is cosymplectic manifold. An f-Kenmotsu manifold with the
semi-symmetric non-metric connection is said to be regular if f? + f + 2f" # 0.

By using (6) and (27), we get

Vxé& = f(2X —n(X)E). (29)
From (7), (26) and (27), we have
(Vxn)Y = fg(dX, ¢Y). (30)

The curvature tensor R of an f-Kenmotsu manifold M with respect to the semi-
symmetric non-metric connection V is defined by

R(X,Y)E=VxVyE—VyVxE — Vixy. (31)
With the help of (26), (29) and (19), we get
VVyE = X()2Y = X(H(Y)E+2/VxY — fXn(Y)E—n(Y)2X  (32)

(Y (X)) 2+ MY)X

and
~VixyE=—2fVxY —2M(Y)X +2fVyX (33)

F2MX)Y + fXn(Y)E - fYm(X)E.
Using (32) and (33) in (30), we get

RIX,Y)E = X(f)2Y — X(F(Y)E—Y(F2X +Y(Fm(X)a+ f(X)Y  (34)

—fMY)X + MmX)Y - V)X
using (28) in (34), it follows that

RX,Y)E=~(f*+ f+2f)(Y)X —n(X)Y]. (35)
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From (35), we have

REY)E=—(f+[+2f)M(Y)E—Y], (36)

and

R(X,&)& = —(f* + f +2f)[X —n(X)E]. (37)
Taking the inner product with Z in (4.10), we have
g(R(X,Y)E, Z) = —(f* + f+2f)In(Y)g(X, Z) —n(X)g(Y, Z)] (38)

which is used in the proof of the following lemma.

Lemma 1. Let M be a 3-dimensional f-Kenmotsu manifold with semi-symmetric non-
metric connection, S Ricci curvature tensor and () Ricci operator. Then

S(X, &) ==2(f*+ f +2f m(X), (39)

Q& = —=2(f*+ f+2f")E. (40)

Proof. Contracting with Y and Z in (38) and taking summation over ¢ = 1,2....n, from (10)

expression the proof (39) is completed. then also using (2.7) and (6) in (39), the proof of
(40) is completed.

Lemma 2. Let M be a 3-dimensional f-Kenmotsu manifold with semi-symmetric non-
metric connection, r scalar curvature tensor, S(X,Y) Ricci curvature tensor and QX
Ricci operator. Then it follows that

SOXY) = (5 + 12+ +2f)9(X.Y) = (54317 +3f + 6 X m(Y) (@)

and

QX = (5 + 12+ /)X — (5 +3/> + 3/ m(Y)e. (42)

Proof. Contracting (37) with Y, we get
g(R(X,€)&,Y) = —(f* + f +2f)(9(X,Y) =n(XIn(Y)) (43)

Using (39), putting X =&Y = X, Z =Y in (14) and contracting with &, we obtain

R(E,X,Y, &) = S(X,Y) = 2(f*+ f +2f)g(X,Y) — g(g(Xv YV)—n(X)m(Y)) (44

F2(f2 4+ f 2 M MY) + 2% + f+2f Im(Xn(Y).
With the help of (43) and (44) proff of (41) is completed.
Using (41) and (12), its verified that

QX —[(G+ 2+ f+2f)X = (G+3/+3f + 6/ MOLY] =0.  (45)

Since Y # 0 in (45), the proof of (42) is completed.
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4. n-Ricci solitons on f-Kenmotsu manifold with semi-symmetric non-metric
connection

Fix h a symmetric tensor field of (0,2)-type which we suppose to be parallel with
respect to the semi-symmetric non-metric connection V that is Vi = 0. Applying the Ricci
commutation identity [11].

VWX, Y; Z,W) = V2h(X,Y;W,Z) =0, (46)
we obtain the relation
WMR(X,Y)Z, W)+ h(Z, R(X,Y)W) = 0. (47)
Realacing Z = W = & in (47) and using (35) and also use the symmetry of h, we have
—(fPH fH2f )X, &) =n(X)R(Y, &)] = (f* + f+2f)n(Y)h(E, &) — h(Y, E)] (48)

Putting X = & in (48) and by virtue of (6), we obtain By using regularity condition in (49),
we have

—(f?+ f+2f)(Y)A(E &) = h(Y, E)] = 0. (49)
Suppose —(f2 + f + 2f') # 0, it results

MY, &) =n(Y)h(E, &). (50)

Now, we can call a regular f-Kenmotsu manifold with semi-symmetric non-metric
connection with —(f? + f + 2f’) # 0, where regularity, means the non-vanishing of the
Ricci curvature with respect to the generator of f-Kenmotsu manifold with semi-symmetric
non-metric connection.

Differentiating (50) covariantly with respect to X, we have

(th) (Y7 E) + h(vXY’ ‘E) + h<Y7 vXE) - [g(@xY, E) + g(}/v vX&)]h(Ew E’) (51)

(Y)[(Vxh)(Y, &) + 2h(VxE, )]

By using the parallel condition VA = 0, n(Vx&) = 0 and by the virtue of (50) in (51), we
get
hY,VxE) = g(Y,VxE)h(E, E).

Now using (29) in the above equation, we get
hMX,Y) = g(X,Y)h(E, &), (52)

which together with the standard fact that the parallelism of h implies that h(, &) is a
constant, via (51). Now by considering the above equations, we can gives the conclusion:
Theorem 1. Let (M, $, & n,g) be an f-Kenmotsu manifold with semi-symmetric non-
metric connection with non-vanishing &-sectional curvature and endowed with a tensor
field h € y(T9(M)) which is symmetric and ¢-skew-symmetric. If h is parallel with
respect to NV then it is a constant multiple of the metric tensor g.
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Definition 1. Let (M, ,&,1,g) be an f-Kenmotsu manifold with semi-symmetric non-
metric connection. Consider the equation [9]

L:g+25S +20g +2un®@n =0, (53)

where L; is the Lie derivative operator along the vector field &, S is the Ricci curvature
tensor field of the metric g, and A and w are real constants. Writing L¢g in terms of
semi-symmetric non-metric connection V, we obtain:

25(X,Y) = —g(VxE,Y) — g(X,VyE) — 2Ag(X,Y) — 2un(X)n(Y), (54)

for any X, Y € x(M).

The data (g, &, N, ) which satisfy the equation (5.8) is said to be n- Ricci soliton on
M [9] ; in particular if w =0 (g,&,\) is Ricci soliton [9] and its called shrinking, steady or
expanding according as A < 0, A =0 or A > 0 respectively [9].

Now, from (29), the equation (54) becomes:

S(X.Y) = —(2f + Ng(X,Y) + (f - pn(X)n(Y). (55)

The above equations yields

S(X,8) = =(f + A+ wn(X), (56)

QX = —(2f + NX + (f — e, (57)

Qf = —(f + A+ i, (58)

F=—An—(n-1f (59)

where 7 is the scalar curvature. OIf the two natural situations regrading the vector field V:

V € Span & and V L&, we investigate only the case V' = &.
Our interest is in the expression for L;g + 25 + 2un ® 1. A direct computation gives

Leg(X,Y) =2f[29(X,Y) —n(X)n(Y)]. (60)

In 3-dimensional f-Kenmotsu manifold with semi-symmetric non-metric connection the Rie-
mannian curvature tensor is given by

R(X,Y)Z =g(Y,Z)QX — g(X,2)QY + S(Y,2)X — S(X,Z)Y — (61)

—5l9(Y. 2)X = g(X, 2)Y].

Putting Z = & in (61) and using (39), (39) and (42) for 3-dimensional f-Kenmotsu manifold
with semi-symmetric non-metric connection, we get

—(f 4+ T2 )X —n(X)Y] =0+ F+20)X - (54343 n(X)el - (62)

(XN +f +2f)Y = (5 +3f2 4+ 3/ MY)E =202 + £ + 2 n(Y) X+

£2(f2 4 42 MEOY = S(Y)X =n(0)Y].
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Again, putting Y = & in the (62) and using (7) and condition of regularity we obtain

QX =[S+ G+ P+ = (P +fr2r)]x+ (63)

r r

g+ G =30+ T 2| n(X)e

From (63), we have

SCLY) =[S+ G+ P2+ 1) = (P4 +20)] g(xY)+ (64)

F[SH Gt s ) =307+ 4+ 20) n(XOn(Y),

Equation (64) shows that a 3-dimensional f-Kenmotsu manifold with semi-symmetric non-
metric connections n-Einstein.
Next, we consider the equation

h(X,Y) = (Leg)(X,Y) +25(X,Y) + 2um(X)n(Y). (65)
By Using (61) and (64) in (65), we have
WX, Y) = (r—4f = f)g(X,Y) + (r —4f +5f = 2f*m(X)n(Y) + 2un(Xn(Y). (66)
Putting X =Y = £ in (66), we get
h(E, &) =2[r +2f — f2 +ul. (67)

Now, (52) becomes
h(X,Y)=2r+2f — f2 4+ ug(X,Y). (68)

From (65) and (68), it follows that g is an n-Ricci soliton.
Therefore, we can state as:

Theorem 2. Let (M, $, &,1, g) be a 3-dimensional f-Kenmotsu manifold with semi-symmetric
non-metric connection, then (g, &, ) yields an n-Ricci soliton on M.

Let V' be pointwise collinear with & ie., V = b&, where b is a function on the
3-dimensional f-Kenmotsu manifold with semi-symmetric non-metric connection. Then

9(Vxbe,Y) + g(Vybe, X) +25(X,Y) + 2Ag(X,Y) + 2um(X)n(Y) = 0

bg((Vx&,Y) + (Xbn(Y) + bg(Vy &, X) + (Yo(X)+

+25(X,Y) + 20g9(X,Y) + 2un(X)n(Y) = 0.
Using (29), we obtain
bg(f(2X —n(X)EY) + (Xbn(Y) +bg(f(2Y —n(Y)E, X)+

+(Ybm(X) +25(X,Y) + 2A9(X,Y) + 2un(X)n(Y) = 0.

which yields
Abfg(X.Y) = 2bfm(X)n(Y) + (Xbn(Y)+ (69)
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+(Ybm(X) +25(X,Y) + 2Ag9(X,Y) + 2un(X)n(Y) = 0.
Replacing Y by & in (5.24), we obtain
(XD) + (EbN(X) + 2bfn(X) = 4(f* + f +2f (X)) + 2An(X) + 2un(X)n(Y).  (70)
Again putting X = & in (70), we obtain
Eb=2(f*+ f+2f)—bf —A—
Plugging this in (70), we get

(Xb) +202(f* + f +2f') = bf = A+ un(X) =0,

or
db={2(f*+ f+2f) —bf —A—u}n. (71)
Applying d on (71), we get {2(f? + f + 2f') —bf — A — u} dn. Since dn # 0 we have
{20+ f+2f)=bf —A—n} =0. (72)

Equation(72) in (71) yields b as a constant. Therefore from (69), it follows that

S(X,Y) = —(A+20f)g(X,Y) + (bf — wn(X)n(Y),

which implies that M is of constant scalar curvature for constant f. This leads to the
following:

Theorem 3. If in a 3-dimensional f-Kenmotsu manifold with semi-symmetric non-metric
connection the metric g is an n-Ricci soliton and V' is positive collinear with &, then V is
a constant multiple of & and g is an n-Einstein manifold and constant scalar curvature
provided bf is a constant.

Example 1. 3-dimensional f-Kenmotsu manifold with semi-symmetric-non-metric connec-
tion:

Consider the three dimensional manifold M = {(x,y,2) € R*|z # 0}, where (z,y, 2)
are the cartesian coordinates in R? and let the vector fields are

0 5 0 0

8—I, €y = 2 8—y, €3 = &,

where e, es, e3 are linearly independent at each point of M. Let g be the Riemannain

metric defined by

glei,er) = glea, e2) = gles, e3) = 1, ge1, e3) = g(ea, e3) = g(e1, e2) =0,

Let 1 be the 1-form defined by n(X) = g(X, e3) for any vector field X on M,

and ¢ be the (1,1) tensor field defined by ¢(e1) = —es, d(e2) = ey, b(e3) = 0.
Then by using the linearity of ¢ and g, we have ¢’X = -X +n(X)E, with & = ej.

Further g(¢ X, dY) = g(X,Y) —n(X)n(Y) for any vector fields X and Y on M. Hence for

es = &, the structure defines an (§)-almost contact structure in R3. Let V be the Levi —

Civita connection with respect to the metric g, then we have

61222

QQ(VXK Z) = Xg(}f, Z) _'_Yg(ZvX) - Zg<X7Y> - g(X7 [Y> Z])

28 M.D. Siddiqi. n-Ricci Solitons and Gradient Ricci Solitonson f-Kenmotsu Manifolds
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- g(Y, [Xv Z]) +g(Z7 [X7Y])7

which is know as Koszul’s formula.

2 2
V€ = ——es, Vees = ——e;,1=1,2; (73)
y4 z
Veleg = v52€1 = ve3€1 = v6362 = Ve3€3 =0.

Here V be the Levi — Civita connection with respect to the metric g , then we have

2 2
=0 = —— , = ——e,.
[61762] ) [61763] 261, [62 6’3] 262

Now consider at this example for semi-symmetric non-metric connection from (26)

and (73),

_ 2 2
Ve-ei = __637Ve,-€3 = ——€, 1= 1a 27 (74)
z

veiej = vegei = O, V€363 = €3,
where ¢ # j. We know that
R(X,Y)Z =VxVyZ —VyVxZ —VxyZ. (75)

By using (74) and (75) we obtain the components of the Riemann and the Ricci curvature
tensor fields are computed as follows:

E)ei,R(ei,ej)eg = 0, (76)

R(@i, 63)63 = (1 — ZQ

4 6
R(ei, e]-)ej = (; — ;)61‘, R(ei, 63)€j = O, R(@g, ei)ei = (— — ;)63,

where i # j =1, 2.
From the equation (76) we can also obtain

[\]
|
|
[\]

_ _ _ 2 4
R(e1,ez)es = (1 — ?)617 Res, e3)e3 = (1 — ﬁ)el, R(e1, ea)er = (; - ﬁ)eh (77)
_ 2 6 _ 2 6 _ 2 4
R(es,e1)e; = (; - ﬁ)eiia R(es, ez)eq = (; - ﬁ)e?n R(ez,e1)e; = (; - ?)63,
Therefore, we have
_ _ 10 2 12 4
S iy G =S ) = T 5 - 17.:1a27S ) = T 5 ) 78
(e, €) (€9, €9) = + . + 1,1 (e3,e3) o + . (78)
_ _ 10 2
S =9 =——4+—-+1 79
(617 61) (627 62) 2'2 + 5 + ) ( )
for i = 1,2. Hence M is also an Finstein manifold. In this case, from (54) (e;, ;) follows,

for
f12g(ei, e;) —m(ein(e;)] + 2S(es, €:) + 2Ag(ei, ;) + 2un(e;)n(e;),
10 2
2f(2 — &;5) + 2(—; + 2 + 1) + 2A + 2ud;5,

for all i € {1,2,3}. Therefore, we have A= (2f =2 — 5 +1)and p= (3f — 1 — 5 +1),

where [ = %(g + i—% + 2) the he data (g, &, A, ) is an n-Ricci soliton on (M, &, &,n, g) with
respect to the semi-symmetric non-metric connection is expanding.
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5. Gradient Ricci soliton in f-Kenmotsu manifolds with semi-symmetric non metric
connection

If the vector field V' is the gradient of a potential function-{ then the gradient Ricci
soliton with semi-symmetric non metric connection and equation (19) assume the form

VVU = S+ Ag. (80)

This reduces to - -
VyDy =Q +AY (81)

where D denotes the gradient operator of g. Form (81) it follows

R(X,Y)D} = (VxQ)Y — (VyQ)X. (82)
Differentiating (42) we have
dr(W)

(X =n(X)&) = (5 = 3/ +3/)+ (83)

+(fg(W, X) = n(XIn(W)) +n(X)VwE.
In (83) replacing W = &, we obtain

(?WQ>X =

dr(&)

(VeQ)X = == (X —n(X)E)). (84)
Then we have - -
9g(VeQ)X — (VxQ)(&, &) = (85)
= (M (x n0e ) = P g i) =0
Using (85) and (84), we obtain
g(R(&, X)Dp, &) = 0. (86)

From (36)

g(R(&,Y)DY, &) = —(f* + f +2f)(g(Y, DY) — n(Y)n(DY)).
Using (86), we get

—(f*+ f+2/)(g(Y, D) —n(Y)n(DY)) =0
—(f2+ fF+2f)(g(Y, DY) —n(Y)g(DY, &) =0,

or
(9(Y, DY) — g(V, &)g(D¥, £)) =0,
which implies
Dy = (&p)E, since — (f2+ f+2f) #£0. (87)
Using (87) and (81)

S(X,Y) +Ag(X,Y) = g(Vy D, X) = g(Vy (E)E, X) =
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= (EV)g(Vy &, X) + Y (Ed)n(X) =
= (EP)g(f(2Y —n(Y)E, X) + Y (&b)n(X).
S(X,Y) +Ag(X,Y) = =2f(&d)g(Y, X) — fF(E0)n(Y In(X) + Y (Eb)n(X). (88)
Putting X = & in (88) and using (39) we get
S(V,8) + An(Y) = Y(ED) = N =22+ f+2f) — fEDIY).  (39)

Interchanging X and Y in (88), we get

S(X,Y)+Ag(X,Y) = 2f(&)g(Y, dX) — f(EPM(X m(Y) + X (Ebm(Y). (90)

Adding (88) and (90) we get

25(X,Y)+20g(X,Y) = 4f(&d)g(X, Y) =2 fn(Xn(Y) +Y (b (X)+ X (Ebn(Y). (91)
Using (89) in (91) we have

S(XY)+Mg(X,Y) = 2f(&)[9(X,Y) —n(X)n(Y)]+

=202 f 420 — FED) Y N(X). 92)

Then using (81) we have
Vy Dy = 2f(EW)(Y =n(Y)E) + A —=2(f* + f +2f) — f(EW)n(Y)e.  (93)
Using (93) we calculate
R(X,Y)Dy = VxVy DY — VyVx D — Vixy) D =

=2fX(EW)Y — 2fY (&) X+ (94)
F2fY (EPM(X)E - 2f X (Epn(Y)E+
FA =202+ f2f) = 2f(E)|(Vxn)(Y)E — (Vyn) (X)E+
=202+ fH2f) = 2f(E0)(VxEM(Y)E — (VyE(X).
Taking inner product with & in (94), we get
0=g(R(X,Y)Dy, &) = 2f[A—=2(f* + f +2f") — 2f(&)]g(dY, X). (95)

Thus we have 2f[A — 2(f2 + f +2f") — 2f(&)] = 0.
Now we consider the following cases:

(i) f=0,o0r
(i) N=2(f>+ f+2f) —2f(&p)] =0,
(ii) f=0and A—2(f>+ f+2f) —2f(&p)] = 0.
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Case (i) If f = 0, the manifold reduces to a f-Kenmotsu manifold with respect to a
semi-symmetric non-metric connection.

Case (ii) Let [N — 2(f? + f + 2f") — 2f(&D)]] = 0. If we use this in (89) we get
Y (&) = —f(E)n(Y). Substitute this value in (91) we obtain

S(Xv Y) +)\9(X7 Y) = Qf(‘ilb)g(X’ Y) (96)

Now, contracting (96), we get

P+ 3A = 6f(ED), (97)
which implies
r A
(&) = a + ﬁ (98)

If 7 = const, then (&) = const = k(say). Therefore from (87) we have D = (&)& = k&,
This we can write this equation as

9(DY, X) = kn(X), (99)

which means that d(X) = kn(X). Applying d this, we get kdn = 0. Since dn # 0, we
have £ = 0. Hence we get D\ = 0. This means that {p = constant Therefore equation (56)
reduces to

S(X,Y)==2(f"+ f+2f)g(X,Y),

that is M is an Einstein manifold.

Case (iii) Using f = 0 and [A — 2(f2 + f + 2f') — 2f(&b)] = 0 in (89) we obtain
Y (&) = 2f(EW)(Y). Now as in Case (ii) we conclude that the manifold is an Einstein
manifold.

Thus we have the following theorem.

Theorem 4. If a 3-dimensional f-Kenmotsu manifold with a semi symmetric non-metric
connection with constant scalar curvature admits gradient Ricci soliton, then the manifold
is either Kenmotsu manifold or an Einstein manifold provided f, f' = const .

In [21] it was proved that if a 3-dimensional compact connected trans-Sasakian man-
ifold is of constant curvature, then it is either «-Sasakian or (3-Kenmotsu. Since for a
3-dimensional Riemannian manifold constant curvature and Einstein manifold are equiva-
lent, therefore from the Theorem 3 we state the following statements.

Corollary 1. I} a compact 3-dimensional f-Kenmotsu manifold with a semi symmetric
non-metric connection with constant scalar curvature admits Ricci soliton, then the man-
ifold f-Kenmotsu.

Also in [21], authors proved that a 3-dimensional connected trans-Sasakian manifold
is locally ¢-symmetric if and only if the scalar curvature is constant provided o and {3 are
constants. Hence from Theorem 3 we obtain the following:

Corollary 2. If a locally &-symmetric 3-dimensional f-Kenmotsu manifold with a semi
symmetric non-metric connection its admits gradient Ricci soliton, then manifold is either
f-Kenmotsu or Einstein manifold provided f, ' = const.
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COJIUTOHBI n-PUYYU U TPAIJUEHTHBIE COJIMTOHbI PUYYA
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npoesn dab Maapeda, 82817 r. [dxazan, CaynoBckas ApaBusi

AnHotaumsa. [lenbio HacTosillel cTaTbH SIBJASIETCS U3yueHHe MHOrooOpasuit
f-KeHMOIy OTHOCHTENBHO MOJYCHMMETPHUECKOH HeMeTpHUUecKOH CBSI3HOCTH, J0-
nyckKawouled conuToH M-Puyun U rpafineHTHBId coquToH Puuuu. Kpome Toro, mbl
JI0Ka3blBaeM, YTO CHMMETPHUUHBIH TeH30p BTOPOro MOPsiiKa SBJSETCS MOCTOSHHBIM
KPaTHBIM METPHUECKOMY TEH30DPYy W MapaJjieJlbHbIM OTHOCHUTEJNbHO MOJYyCHMMETpPH-
4yeCKOH HeMeTpHUUeCKOH CBSI3HOCTH. B 1onosiHeHHe Mbl MPOUJINIOCTPUPOBANHU TPHU-
Mep, IeMOHCTPUPYIOIHKE, uTo 3-MepHble f-KeHMony MHOroo6pasus ¢ mosyCUMMeT-
PUUHOH HEMeTPHYeCKOH CBSI3HOCTBIO AOMYCKAIOT pacluupsiioliuiics 1n-Puuuu cosu-
ToH. HakoHell, mokasaHo, 4To JIOKaJbHO (-CUMMeTpPHUHBle 3-MepHble f-Kenmoiy
MHOroo0pasusi ¢ MOJyCUMMETPUYeCKOH HeMeTPUYeCKOH CBSI3HOCTBIO JOMYCKAIOT
rpafyeHTHBIH COMUTOH Puuuu.

KuroueBble cioBa: coquToHbl TM-Puuuu, rpagueHTHBIE COJMUTOHBI Puyun,
f-KenmMoriy MmHOroo6pasue, MoJyCMMMEeTPHUHASI HeMeTPUYecKas CBS3HOCTb, 1-9HH-
1ITeHHOBO MHOTrooOpasue.
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