Шлык В.А. Критерии устранимых множеств для гармонических функций из соболевских пространств L^1_p,w

Рейтинг:   / 2
ПлохоОтлично 

https://doi.org/10.15688/mpcm.jvolsu.2019.2.4

Владимир Алексеевич Шлык
Доктор физико-математических наук, профессор кафедры информатики
и информационных таможенных технологий,
Владивостокский филиал Российской таможенной академии
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ул. Стрелковая, 16в, 690034 г. Владивосток, Российская Федерация

Аннотация. В работе установлены точные функциональные и емкостные характеристики устранимых множеств для гармонических функций на открытом ограниченном множестве GRn, n ≥2, из весового пространства L1p,w (G) с весом w, удовлетворяющим Ap-условию Макенхаупта, p > 1. Доказательство основных результатов базируется на теории распределений по Л. Шварцу и использует свойства экстремальных функций для емкости компакта.

Ключевые слова: соболевские пространства, гармонические функции, распределение Шварца, емкость множества.

Лицензия Creative Commons
Произведение «Критерии устранимых множеств для гармонических функций из соболевских пространств L1p,w», созданное автором по имени Шлык В.А., публикуется на условиях лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

 

Цитата: Математическая физика и компьютерное моделирование. Том 22 № 2 2019, с. 51-64

 

Вложения:
Скачать этот файл (4. Shlyk.pdf) 4. Shlyk.pdf
URL: https://mp.jvolsu.com/index.php/ru/component/attachments/download/867
486 Скачивания