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Introduction

The study exact solutions for nonlinear partial differential equations play an important
role in many phenomena in physics such as hydrodynamics, fluid mechanics, condensed
matter physics, plasma physics, optics and so on. Many effective and powerful methods
have been established and improved, such as the Jacobi elliptic method [6], the (Go/G)-
expansion method [4], the Exp-function method [5], the tanh-function method [7], the
Darboux transformation method [3].

In this work we study the generalized nonlinear Schrodinger equation,

¢. = i(qu + 2|q)*q + xq) +vqr, (1)

where ¢ is a complex valued function of the spatial coordinate z and the time ¢, the subscripts
denote the partial derivatives with respect to the variables z,¢#. The equation (1) is a
typical soliton equation with rich physical and mathematical applications where « denotes
the amplification or absorption and y relates to the group velocity [1;2].

The aim of this paper is to construct some new exact solutions for equation (1). We
study the equation (1) by the sine-cosine method that have been extensively studied and
widely applied for a wide variety of nonlinear problems [8-10].

The paper is organized as follows. In Section 2, we present the description of sine-
cosine method. In Section 3, the sine-cosine method is applied to obtain exact solutions for
generalized nonlinear Schrodinger equation.

1. Description of Sine-cosine Method

In this section we describe the sine-cosine method [8-10]. According to the sine-cosine
method by using a wave variable

u(z,t) = u(z —ct), (2)
the partial differential equation (PDE)
El(u7utauz7uzzauzzza"-) = 07 (3)

can be converted to ordinary differential equation (ODE)

"

Ey(u, —cu',u' v u y.) =0, (4)

So, one can immediately reduce the one-dimensional PDE (3) into ODE (4) by transforma-
tion (2). Then the equation (4) is integrated as long as all terms contain derivatives where
integration constants are considered zeros. The solutions of ODE (4) can be expressed in
the form

u(z,1) = AeosP (u), [E] < % (5)
or

u(z,t) = AsinP(nE), €] < (6)

A
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where & = z — ct and the parameters A, u and 3 will be determined, and p is wave number

and c is wave speed respectively. The derivatives of (5) become
(") = —nPur"cos"® ! (uE) sin(uk), (7)
(") = —n’W’B°A" cos™ (LE) + npA"B(nB — 1) cos™ 3 (uE). 8)
And the derivatives of (6) have next forms
(") = —nPuA"sin"* (uE) cos(p), (9)

"

(W™ = —n’W?BAA"sin"P (k) + npA"B(np — 1) sin"P2(ug), (10)

and so on for the other derivatives. Applying (5)-(10) into the reduced ODE (4) we obtain a
trigonometric equation of cosP(ué) or sinP(u&) terms. Then, we determine the parameters
by first balancing the exponents of each pair of cosine or sine to determine (3. Next, we
collect all coefficients of the same power in cos®(u&) or sin®(u&), where these coefficients
have to vanish. The system of algebraic equations among the unknown 3, A, and p will be
given and from that we can determine coefficients.

2. Using the Sine-cosine Method

We consider the generalized nonlinear Schrodinger equation (1). By transformation
g = ety (z 4, (11)
the equation (1) can be converted to
jau + u, + id*u + 2duy, — iy — 200 — iouw — idyu — yuy = 0, (12)
Be separating real and imaginary parts in the equation (12) we obtain next system

U, + 2du; —yu; = 0, (13)
u(a+d* — « —yd) —uy —2u® = 0. (14)

Substituting the wave transformation
u(z, 1) = u(E) = u(z — ct), (15)
into system of equations (13)-(14) we obtain that

ul(l —2dc+vye) = 0, (16)
u(a + d*> — « — yd) — 2 =20 = 0. (17)
From equation (16) we can get
1
€= 3y (18)
So, finally we study ODE (17)
u(a + d* — « — yd) — A =2 =0, (19)

where c¢ is expressed by equation (18).

20 G.N. Shaikhova, A.M. Syzdykova, S. Daulet. Exact Solutions
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2.1. The Sine Solution
According to method the sine solution of the (19) can be found by transformation
u = AsinP (ug). (20)

We use (20) and its second order derivative

"

u' = B Asin® (LE) + WAB (B — 1) sinP 2 (uE), (21)
and substitute (20) and (21) into (19) we obtain

AsinP (ug)(a + d* — o — yd) + 2B AsinP (ug) —
—AAB(B — 1) sinP 2 (u&) — 2A%sin®P (ué) = 0. (22)

From (22) we find f:
B—2=33=p=-1. (23)
Substitute (23) in (22) we obtain equation

Asin™H(uE)(a + d* — o — yd) + pPAsin T (uE) —
—2c2u*Asin " (uE) — 2A% sin 3 (ug) = 0. (24)

From the equation (24) we have the next system

sin ' (uE) 1 Aa+d* — o —yd) + A =0, (25)
sin?(ug) : —2c7uA — 2A% = 0. (26)

The equation (25) gives

and from (26) we obtain

A:j:\/(a—i-dQ—oc—yd). (28)

Substituting (27)-(28) into (20) and then obtained expression into (11) we have the sine
solution

V—(a+d?—o—vd)

c

@ (z,t) = 2@ /o — @2 — x — ydsin™!( (z —ct)), (29)

1

where ¢ = m
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2.2. The Cosine Solution
Cosine solution of the (19) can be found by transformation
u = AcosP (), (30)

and its second order derivative is

"

u' = —p?B*AcosP (KE) + WPAB(B — 1) cos® 2 (né). (31)
Substitute (30) and (31) into (19) we obtain

AcosP (u&)(a + d* — o — yd) + Pu?p?*A cosP (ug) —
—PIPAB(B — 1) cosP2(u&) — 2A% cos®P (uE) = 0. (32)

From (32) we find f3:
B—2=3=p=-1 (33)
Substitute (33) in (32) we obtain

Acos (uE)(a+ d* — o — yd) + A cos (1E) —
—2c*uA cos P (uE) — 2A% cos?(ug) = 0. (34)

From the equation (34) we have the next system

cos 1 (nE) : Aa+d* — o —yd) + A =0, (35)
cos 3(uE) : —2c%u*A — 22* = 0. (36)
From (35) we have
u:i\/—(a+d2—oc—yd)7 (37)
c
and from (36) we obtain
?\:i\/(a+d2—oc—yd). (38)

Substituting (37)-(38) into (30) and then obtained expression into (11) we obtain the cosine
solution

a+d*— o —yd)
Cc

@(z,t) = 2@ /o — @2 — x — yd cos™!( vl (z —ct)), (39)

where ¢ = ﬁ.
In Figures 1, 2 and 3, we show the profile of solutions (29) and (39) with three cases:

x=7v; x <Y;ex>Yy.
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g1 | 9z |

Fig. 1. Solutions of ¢1(z,t) and g»(z,t) in case o« = .
The parameters adopted here are: a =1;d=1;, a =3; vy =3

g1 | g2 |

Fig. 2. Solutions of ¢1(z,t) and g»(2,t) in case o < .
The parameters adopted here are: a =1;d=1, =1,y =5

Fig. 3. Solutions of ¢;(z,t) and ¢2(z,t) in case o« > y.
The parameters adopted here are: a =1;d=1; a =5,y =1
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Conclusion

In this work the sine-cosine method was used to present an analytic study of the
generalized nonlinear Schrodinger equation. Several exact solutions were obtained. The
plots of obtained solutions are presented for cases &« =vy; & < y; ex > y. The performance
of the scheme shows that the method is powerful and reliable. The present method is readily
applicable to a large variety of such nonlinear equations.

NOTE

! This research is funded by the Science Committee of the Ministry of Education and
Science of the Republic of Kazakhstan (Grant No. AP09057947).
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AHHoTaumsa. B paGote wuccienyercss 06001ieHHOe HeJHHEHHOE YpaBHEHHe
Hlpenunrepa. TouHble perieHUs MOJyUYeHbl METOIOM CHHYC-KOCHHYCOB. DTOT METOJ
UCIIOJIb3YeTCs ISl TIOJYYeHHsT TOUHBIX PEeIleHUH JJIf Pa3JHYHbIX THIIOB HeJHHel-
HBIX ypaBHEHWH B YaCTHBIX MPOM3BOAHBIX. [IpencraBieHbl rpaduku MOJTydeHHBIX
pewenuii. [losyueHHble pelleHHst BaXKHbI A/ OOBSCHEHHsI HEKOTOPHIX 3axad (hu-
3UKH.
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