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Abstract. In this research article, we estimate the behavior of an imperfect
fluid generalized Robertson — Walker spacetime (𝐺𝑅𝑊 ) in terms of 𝑘-Yamabe
soliton with torse-forming vector field. Besides this, we evaluate a specific situa-
tion when the potential vector filed ξ is of the form of gradient i.e., ξ = grad(Ψ),
we extract a Laplace — Poisson equation, and Liouville equation from the quasi
𝑘-Yamabe soliton equation.
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Introduction

Symmetry is a beautiful property of this universe. It is also one of the fundamental
concepts that can describe the laws of nature such as from general relativity to quantum
mechanics. In 1915, Albert Einstein introduced the theory of “General Relativity of grav-
ity” (𝐺𝑅). In this theory the gravitational field is the spacetime curvature and its source
is energy-momentum tensor. All the equations of modern particle physics (astrophysics,
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plasma physics, nuclear physics etc.) were modeled after the Einstein equations, the equa-
tions that describe the evolution of spacetime curvature. The goal to develop differential
geometry and relativistic fluids model in the mathematical language are most efficient for
understanding general relativity. The main idea of the general theory of relativity is that the
spacetime should be described as a curved manifold. According to J. A. Wheeler, “Matter
tells spacetime how to bend and spacetime returns the complement by telling matter how to
move”.

The spacetime of general relativity and cosmology can be modeled as a connected
4-dimensional time orientated Lorentzian manifold which is a special subclass of pseudo-
Riemannian manifolds with Lorentzian metric 𝑔 with signature (−,+,+,+) has great im-
portance in general relativity. The geometry of Lorentzian manifold begins with the study
of nature of vectors on the manifold. Therefore, Lorentzian manifold becomes most suitable
choice for the study of general relativity. Alias et al. [1] introduced the notion of gener-
alized Robertson — Walaker (𝐺𝑅𝑊 ) spacetime, which is a generalization of the Robert-
son — Walker (𝑅𝑊 ) spacetime. A 𝐺𝑅𝑊 spacetime of dimension 𝑛 is an 𝑛-dimensional
Lorentzian manifold 𝑀 . According to Sanchez [27] the 𝐺𝑅𝑊 -spacetime have application in
inhomogeneous spacetime with an isotropic radiation. O’Neil [26] in his book listed that a
𝑅𝑊 -spacetime is a imperfect fluid spacetime. For dimension (𝑛 = 4) 𝐺𝑅𝑊 -spacetime is a
imperfect fluid if it is 𝑅𝑊 spacetime.

The symmetries are a part of geometry and thus reveals the physics. There are many
symmetries regarding the spacetime geometry and matter. The metric symmetries are
important as they simplify solution to many problems. Their main application in general
relativity is that they classify solutions of Einstein Field equations. One of these symmetries
is solitons associated with the geometric flow of spacetime geometry. Such as Ricci flow and
Yamabe flow are important because they can help in understanding the concepts of energy
and entropy in general relativity. Ricci soliton and Yamabe soliton are the points at which
the curvatures obey a self similarity.

In [2] Ahsan and Ali discussed about the spacetime with Ricci soliton. In [6] Blaga
studied the geometrical aspects of a perfect fluid spacetime in terms of Einstein solitons and
Ricci solitons. In addition, Venkatesha and Aruna [33] also apply Ricci solitons and study the
perfect fluid spacetime with the potential vector field. More recently, Chen and Deshmukh
[11] studied more general notion namely generalized quasi Yamabe solitons. In [18] Jun
and Siddiqi also studied almost quasi-Yamabe solitons on Lorentzian concircular structure
manifolds. Moreover, various authors extensively studied about solitons with spacetime in
various ways (for more details see [3; 6; 8; 16; 29; 30]). We notice that Chen [13] defined
𝑘-almost Yamabe soliton. Motivated by this, we consider 𝑘-Yamabe soliton in this study.

Therefore, motivated by of the above researches and remarks, in this paper, we study
the geometry of a imperfect fluid spacetime admitting 𝑘-Yamabe soliton.

A 𝑘-Yamabe soliton is a Riemannian metric 𝑔 on smooth manifold 𝑀 such that a
smooth vector field 𝑈 , a soliton constant γ and a funstion 𝑘 : 𝑀 −→ R satisfy

𝑘

2
L𝑈𝑔 = (𝑅− γ)𝑔, (1)

where 𝑅 indicate the scalar curvature of 𝑀 ; L𝑈 is the Lie-derivative in the direction of
potential vector field 𝑈 . Represent the 𝑘-Yamabe soliton by (𝑔, 𝑈, 𝑘,γ). The 𝑘-Yamabe
soliton is said to be expanding, steady or shrinking, according as γ < 0, γ = 0 or γ > 0
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respectively.
We call a Riemannian manifold 𝑀 a quasi 𝑘-Yamabe soliton if it admits a vector field

𝑈 such that [11]
𝑘

2
L𝑈𝑔 = (𝑅− γ)𝑔 +ωη⊗ η, (2)

for some constant γ and some function ω, where η is the dual 1-form. We indicate the
quasi 𝑘-Yamabe soliton satisfying (2) by (𝑔, 𝑈, 𝑘,γ,ω). For more details about solitons
see [4; 5; 10; 11; 31].

Geometry of Ricci — Yamabe solitons, can develop a bridge between a curvature
inheritance symmetry of perfect fluid spacetime manifold (semi-Riemannian manifold) and
class of 𝑘-Yamabe solitons. In support of this relation we construct three mathematical mo-
dels of semi-Riemannian manifolds with 𝑘-Yamabe solitons. As an application to relativity
by investigating the kinematic and dynamic nature of spacetime, we present a physical
models of three classes namely, shrinking, steady and expanding of perfact fluid solution of
𝑘-Yamabe solitons spacetime.

To deal with three special classes of 𝑘-Yamabe solitons, namely, shrinking (γ < 0)
which exists on a maximal time interval −∞ < 𝑡 < 𝑏 where 𝑏 < ∞, steady (γ = 0)
which exists for all time or expanding (γ > 0) which exists on maximal time interval
𝑎 < 𝑡 < ∞, where 𝑎 > −∞ [14]. These classes yields example of ancient, eternal
and immortal solution, respectively. Also, solutions of Einstein gravity coupled to a free
mass less scalar field with nonzero cosmological constant are associated with shrinking or
expanding 𝑘-Yamabe solitons.

1. Preliminaries

The energy-momentum tensor plays the major role as a matter content of the space-
time, matter is assumed to be fluid having density, pressure and having dynamical and
kinematical quantities like velocity, acceleration, vorticity, shear and expansion [32]. The
matter content of the universe is consider to behave like a perfect fluid and imperfect fluid
spacetime in standard cosmological models. The Brans-Dicke-like field of scalar-tensor grav-
ity can be described as an imperfect fluid in an approach in which the field equations are
regarded as effective Einstein equations. In Einstein’s theory, an effective imperfect fluid
description can be given for a canonical, Generalized-Robertson — Walker (𝐺𝑅𝑊 )-spaces
used in Friedmannian cosmology [23].

The stress-energy-momentum tensor 𝑇 of an imperfect fluid 𝐺𝑅𝑊 -spacetime in the
following form ([25; 26])

𝑇 (𝑈, 𝑉 ) = 𝑝𝑔(𝑈, 𝑉 ) + (σ+ 𝑝)η(𝑈)η(𝑉 ) + 𝑃 (𝑈, 𝑉 ), (3)

where σ, 𝑝 are the energy density and isotropic pressure respectively and 𝑃 denotes the an
isotropic pressure tensor to the viscous fluid (incompressible fluid).

Further, example of energy-momentum tensor are energy-momentum tensor of electro-
magnetism and scalar field theory.

The field equation governing the perfect fluid motion is Einstein’s gravitational equa-
tion [26]

𝑆(𝑈, 𝑉 ) +

(︂
λ− 𝑅

2

)︂
𝑔(𝑈, 𝑉 ) = κ𝑇 (𝑈, 𝑉 ), (4)

ISSN 2587-6325. Математ. физика и компьютер. моделирование. 2022. T. 25. № 1 23



МАТЕМАТИКА И МЕХАНИКА

for any 𝑈, 𝑉 ∈ 𝜒(𝑀), where λ is the cosmological constant, κ is the gravitational constant
(which can be taken 8π𝐺, with 𝐺 the universal gravitational constant), 𝑆 is the Ricci
tensor and 𝑅 is the scalar curvature of 𝑔. They are obtained from Einstein’s equations by
adding a cosmological constant in order to get a static universe, according to Einstein’s
idea. In modern cosmology, it is considered as a candidate for dark energy, the cause of the
acceleration of the expansion of the universe.

Also, From equations (3) and (4) we obtain the Einstein’s equation for an imperfect
fluid 𝐺𝑅𝑊 -spacetime

𝑆(𝑈, 𝑉 ) =

(︂
−λ+ 𝑅

2
+ κ𝑝

)︂
𝑔(𝑈, 𝑉 ) + κ(σ+ 𝑝)η(𝑈)η(𝑉 ) + κ𝑃 (𝑈, 𝑉 ). (5)

2. Imperfect fluid generalized Robertson — Walker spacetime

In this, section, we have discussed the basic ingredients about the GRW spacetime.
Let (𝑀4, 𝑔) be a relativistic imperfect fluid 𝐺𝑅𝑊 -spacetime satisfying (5). Contract-

ing (5) and assumed that 𝑔(ξ, ξ) = −1, we obtain

𝑅 = 4λ− κ[3𝑝− σ+ 𝐽 ], (6)

where 𝐽 = 𝑡𝑟𝑎𝑐𝑒(𝑃 ). Therefore

𝑆(𝑈, 𝑉 ) =
(︁
λ− κ

2
[𝑝− σ+ 2𝐽 ]

)︁
𝑔(𝑈, 𝑉 ) + κ(σ+ 𝑝)η(𝑈)η(𝑉 ) + κ𝑃 (𝑈, 𝑉 ). (7)

𝑄𝑈 = 𝑎𝑈 + 𝑏η(𝑈)ξ, (8)

where 𝑎 =
(︀
λ− κ

2
(𝑝− σ+ 2𝐽)

)︀
and 𝑏 = κ(1 + σ+ 𝑝). Also

𝑆(ξ, ξ) =
κ

2
[3𝑝+ σ+ 2(𝐽 + 𝐼)]− λ, (9)

where 𝐼 = 𝑃 (ξ, ξ).
Definition 1. A vector field γ𝑗 on a semi-Riemannian manifold is said to be torse-forming
vector field if [35]

∇𝑘γ𝑗 = ω𝑘γ𝑗 + ϕ𝑔𝑘𝑗, (10)

where ϕ is a scalar function and ω𝑘, non-vanishing 1-form.
It is noticed that a unit timelike torse-forming vector field 𝑢𝑖 on a semi-Riemannain

manifold 𝑀 takes the following form [35]:

∇𝑘𝑢𝑗 = ϕ(𝑔𝑘𝑗 + 𝑢𝑘𝑢𝑗). (11)

Motivated by the following results (see [11; 24]) we have the following:
Theorem 1. A Lorentzian manifold 𝑀 with 𝑑𝑖𝑚(𝑀) ≥ 3 is a generalized Robertson —
Walker spacetime (GRW) if and only if it admits a time like concircular vector field.

In 2017, Mantica and Molinari [24] has discovered the necessary and sufficient condi-
tions for the Lorentzian manifold to be generalized Robertson — Walker spacetime (𝐺𝑅𝑊 )
if and only if it admits a unit timelike torse-forming vector field ∇𝑘𝑢𝑗 = ϕ(𝑔𝑘𝑗 + 𝑢𝑘𝑢𝑗).

Now, follow by the above equations and definition, we have the following theorem for
𝐺𝑅𝑊 -spacetime in terms of global expressions [9].

24 M.D. Siddiqi, S.A. Siddiqui. 𝑘-Yamabe and Quasi 𝑘-Yamabe Solitons on Imperfect Fluid
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Theorem 2. On an imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike torse-forming
vector filed ξ, the following relation hold:

η(∇𝑈ξ) = 0, ∇ξξ = 0, (12)

(∇𝑈η)(𝑉 ) = ϕ[𝑔(𝑈, 𝑉 ) + η(𝑈)η(𝑉 )], (13)

𝑅(𝑈, 𝑉 )ξ = ϕ[η(𝑉 )𝑈 − η(𝑈)𝑉 ], (14)

𝑅(ξ, 𝑈)𝑉 = ϕ[η(𝑉 )𝑈 − 𝑔(𝑈, 𝑉 )ξ], (15)

η(𝑅(𝑈, 𝑉 )𝑊 =) = ϕ[η(𝑈)𝑔(𝑉,𝑊 )− η(𝑉 )𝑔(𝑌,𝑊 )], (16)

(ℒξ𝑔)(𝑈, 𝑉 ) = 2ϕ[𝑔(𝑈, 𝑉 ) + η(𝑈)η(𝑉 )], (17)

𝑆(𝑈, ξ) = −3ϕη(𝑈). (18)

Proof. To compute (∇𝑈η)(𝑉 ) = 𝑈(η(𝑉 ) − η(∇𝑈𝑉 )) = 𝑈(𝑔(𝑉, ξ) − 𝑔(∇𝑈𝑉, ξ)) =
= 𝑔(𝑉,∇𝑈ξ) = ϕ[𝑔(𝑈, 𝑉 ) + η(𝑈)η(𝑉 )]. In particular (∇ξη)(𝑉 ) = 0. The relation (12) can
be obtained by (11).

Substituting the expression of ∇𝑈ξ from (11) into 𝑅(𝑈, 𝑉 )ξ = ∇𝑈∇𝑉 ξ −∇𝑉∇𝑈ξ −
−∇[𝑈,𝑉 ]ξ and by direct calculation we have find the relation (14), (15) and (18).

Now, Lie derivative 𝑔 along ξ, followed by straight forward computation we get (17).

3. Geometrical characteristics of imperfect fluid GRW-spacetime

In this section, we have discussed the properties of a new curvature tenor called,
semi-conformal curvature tensor, and its relationship with imperfect fluid 𝐺𝑅𝑊 -spacetime.

In 2017, Kim [20] introduced curvature like-tensor field which remain invariant under
conharmonic transformation. He named new tensor as semi-conformal curvature tensor
denoted by 𝑃 . For a semi-Riemannian manifold 𝑀𝑛 with metric 𝑔, this tensor is defined
as [21]

𝑃 (𝑈, 𝑉 )𝑊 = −(𝑛− 2)δ𝐶(𝑈, 𝑉 )𝑊 + [ε+ (𝑛− 2)δ]𝐿(𝑈, 𝑉 )𝑊, (19)

provided the constant ε and δ are not simultaneously zero, where 𝐶 and 𝐿 are conformal
curvature tensor and conharmonic curvature tensor respectively.

Now, an imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike torse-forming vector
filed of dimension 4 is said to be semi-conformally flat, if the semi-conformal curvature
tensor 𝑃 vanishes and is defined by the above equation (19) [20].

Let (𝑀4, 𝑔) be a semi-conformallly flat imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit
timelike torse-forming vector filed ξ. As 𝑃 (𝑈, 𝑉 )𝑊 = 0, we have div𝑃 = 0, where div
denotes the divergence. Now, from (19) we have

(∇𝑈𝑆)(𝑉,𝑊 )− (∇𝑉 𝑆)(𝑈,𝑊 ) =
δ

3ε
[𝑈(𝑅)𝑔(𝑉,𝑊 )− 𝑉 (𝑅)𝑔(𝑈,𝑊 )], (20)

or

𝑔((∇𝑈𝑄)𝑉 − (∇𝑉𝑄)𝑈,𝑊 ) =
δ

3ε
[𝑈(𝑅)𝑔(𝑉,𝑊 )− 𝑉 (𝑅)𝑔(𝑈,𝑊 )]. (21)

Here scalar curvature 𝑅 is constant and from (8) and (21) leads to

0 = (∇𝑈𝑄)− (∇𝑉𝑄)𝑈 = 𝑏[(∇𝑈η)(𝑉 )ξ+ η(𝑉 )∇𝑈ξ− (∇𝑉 η)(𝑈)ξ− η(𝑉 )∇𝑈ξ]. (22)
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Then from (11) and (13), we find that

𝑏 [η(𝑉 )𝑈 − η(𝑈)𝑉 ] = 0, (23)

which shows that 𝑏 = 0, implies that 𝑝 = −(σ + 1), the energy-momentum tensor is
Lorentz-invariant and during this case we can discuss about vacuum.

From (8), we have 𝑄𝑈 = 𝑎𝑈 . So 𝑃 = 0 implies

𝑅(𝑈, 𝑉 )𝑊 =
2δ(λ+ κ[1

2
+ σ+ 𝐽 ])

3ε
[𝑔(𝑉,𝑊 )𝑈 − 𝑔(𝑈,𝑊 )𝑉 ], (24)

which means (𝑀4, 𝑔) is of constant curvature
2δ(λ+κ[ 1

2
+σ+𝐽 ])

3ε
. This lead the following result:

Theorem 3. If imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike torse-forming vector
filed ξ is semi-conformally flat, then the stress-energy tensor is Lorentz-invariant and is

of constant curvature 2δ(λ+κ[ 1
2
+σ+𝐽 ])

3ε
.

A pseudo-Riameannian manifold is said to be quasi-constant curvature if the curvature
tensor of the type (0, 4) satisfies

𝑅(𝑈, 𝑉,𝑊,𝑊
′
) = 𝑚[𝑔(𝑉,𝑊 )𝑔(𝑈,𝑊

′
)− 𝑔(𝑈,𝑊 )𝑔(𝑉,𝑊

′
)] + (25)

+𝑛[𝑔(𝑈,𝑊
′
)η(𝑉 )η(𝑊 )− 𝑔(𝑈,𝑊 )η(𝑉 )η(𝑊

′
)+

+ 𝑔(𝑉,𝑊 )η(𝑈)η(𝑊
′
)− 𝑔(𝑉,𝑊

′
)η(𝑈)η(𝑊

′
)],

where 𝑚 and 𝑛 are scalars and η could be a non-zero 1-form such that 𝑔(𝑈,𝑍) = η(𝑈)
for all 𝑈,𝑍 are unit vector field. The notion of a manifold of quasi-constant curvature was
introduced by Yano [34].

Now, from equation (2), we have the following.

Corollary 1. A semi-conformally flat imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike

torse-forming vector filed ξ is of quasi-constant curvature with 𝑚 =
2δ(λ+κ[ 1

2
+σ+𝐽 ])

3ε
and

𝑛 = 0 in (25).
We know that manifold of constant curvature is Einstein manifold. From Theorem (3),

we state the following theorem.

Theorem 4. A semi-conformally flat imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike
torse-forming vector filed ξ is an Einstein.

A pseudo-Riemannian manifold (𝑀, 𝑔) is said to be semi-symmetric and Ricci semi-
symmetric if (𝑀, 𝑔) holds the condition 𝑅(𝑈, 𝑉 ) · 𝑅 = 0 and 𝑅(𝑈, 𝑉 ) · 𝑆 = 0, respectively.
The condition 𝑅(𝑈, 𝑉 ) ·𝑅 = 0 implies 𝑅(𝑈, 𝑉 ) · 𝑆 = 0, but converse need not to be true.

Now, we prove the following;

Theorem 5. A semi-conformally flat imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike
torse-forming vector filed ξ is semi-symmetric and Ricci semi-symmetric.

Proof. Using, equation (2) we can easily show that 𝑅(𝑈, 𝑉 ) · 𝑅 = 0 and this condition
implies 𝑅(𝑈, 𝑉 ) · 𝑆 = 0.

26 M.D. Siddiqi, S.A. Siddiqui. 𝑘-Yamabe and Quasi 𝑘-Yamabe Solitons on Imperfect Fluid
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4. k-Yamabe soliton on imperfect fluid GRW-spacetime

This section deal with the study of 𝑘-Yamabe soliton in an imperfect fluid 𝐺𝑅𝑊 -
spacetime whose unit timelike velocity vector filed ξ is torse-forming.

Now, taking 𝑉 = ξ, equation (1) becomes

𝑘

2
L𝑈𝑔(𝐸,𝐹 ) = (𝑅− γ)𝑔(𝐸,𝐹 ), (26)

where 𝑅 is scalar curvature. Now, using (17), we find

(𝑘ϕ−𝑅− γ)𝑔(𝐸,𝐹 ) + 𝑘ϕη(𝑈)η(𝑉 ) = 0. (27)

Putting 𝐸 = 𝐹 = ξ in (27) and using (9), we get

γ = 4λ− κ(3𝑝− σ+ 𝐽). (28)

Also, using the above equation in (26), we have

Lξ𝑔 = 0. (29)

Thus, ξ is a Killing vector field. Hence we have the following conclusions:

Theorem 6. If an imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike torse-forming
vector filed ξ admits a 𝑘-Yamabe soliton (𝑔, ξ, 𝑘,γ), ξ being the Reeb vector field, then
the scalar curvature 𝑅 is constant and ξ becomes a Killing vector field.
Theorem 7. If an imperfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike torse-forming
vector filed ξ admits a 𝑘-Yamabe soliton (𝑔, ξ, 𝑘,γ) then 𝑘 Yamabe solitons is expanding,
steady and shrinking according as

1) λ < κ(3𝑝−σ+𝐽)
4

,

2) λ = κ(3𝑝−σ+𝐽)
4

and

3) λ > κ(3𝑝−σ+𝐽)
4

respectively.

Moreover, in case of a perfect fluid 𝐺𝑅𝑊 -spacetime 𝐽 = 0, then we turn up the
following

Corollary 2. If a perfect fluid 𝐺𝑅𝑊 -spacetime with a unit timelike torse-forming vector
filed ξ admits 𝑘-Yamabe soliton (𝑔, ξ, 𝑘,γ) then 𝑘-Yamabe solitons is expanding, steady
and shrinking according as

1) λ < κ(3𝑝−σ)
4

,

2) λ = κ(3𝑝−σ)
4

and

3) λ > κ(3𝑝−σ)
4

respectively.
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5. Quasi k-Yamabe soliton on imperfect fluid GRW-spacetime

In this segment, we deal with quasi 𝑘-Yamabe soliton on an imperfect fluid 𝐺𝑅𝑊 -
spacetime if the potential vector field ξ of the quasi 𝑘-Yamabe soliton is of the form, i.e.,
ξ = grad(Ψ).

Let us assume the equation

𝑘Lξ𝑔(𝐸,𝐹 ) + 2(γ−𝑅)𝑔(𝐸,𝐹 )− 2ωη(𝐸)η(𝐹 ), (30)

where 𝑔 is a Riemannian metric, 𝑅 is scalar curvature, ξ is a vector field, η is a 1 form and
γ is real constant, and ω is some function such that µ : 𝑀 −→ R. The data (𝑔, ξ, 𝑘,γ,ω)
satisfies the equation (30) is said to be quasi-𝑘-Yamabe soliton. In particular, if ω = 0,
(𝑔, ξ, 𝑘,γ) is a Yamabe soliton.
From (30) we turn up

(γ−𝑅)𝑔(𝐸,𝐹 ) = −ωη(𝐸)η(𝐹 )− 𝑘

2
[𝑔(∇𝐹ξ, 𝐸) + 𝑔(𝐹,∇𝐸ξ)], (31)

for any 𝐸,𝐹,∈ 𝜒(𝑀).
Apply contraction on (31) we get

4γ−ω = 4𝑅− 𝑘 div(ξ). (32)

Now putting 𝐸 = 𝐹 = ξ in (31), we obtain

ω− γ = −𝑅. (33)

Therefore {︃
γ = 𝑅− 𝑘

3
div(ξ)

ω = −2𝑅− 𝑘
3
div(ξ).

(34)

Using (34) we can conclude the followings.
Theorem 8. Let (𝑀4, 𝑔) be an imperfect fluid 𝐺𝑅𝑊 -spacetime and η be the 𝑔-dual 1-form
of the gradient vector field ξ = grad(Ψ). If (30) determines a quasi 𝑘-Yamabe soliton,
then the Laplace — Poisson equation satisfying by Ψ becomes

Δ(Ψ) =
3

𝑘
[ω+ 2𝑅]. (35)

Theorem 9. Let (𝑔, ξ, 𝑘,γ,ω) be quasi 𝑘-Yamabe soliton in an an imperfect fluid 𝐺𝑅𝑊 -
spacetime. Then the soliton is steady, expanding and shrinking according as

1) λ < 3κ
4

{︀
(3𝑝− σ+ 𝐽) + 𝑘

12
div ξ

}︀
,

2) λ = 3κ
4

{︀
(3𝑝− σ+ 𝐽) + 𝑘

12
div ξ

}︀
and

3) λ > 3κ
4

{︀
(3𝑝− σ+ 𝐽) + 𝑘

12
div ξ

}︀
respectively.

Corollary 3. Let (𝑔, ξ, 𝑘,γ,ω) be quasi 𝑘-Yamabe soliton in an an imperfect fluid 𝐺𝑅𝑊 -
spacetime. Then the soliton is steady, expanding and shrinking according as
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1) λ < 3κ
4

{︀
(3𝑝− σ) + 𝑘

12
div ξ

}︀
,

2) λ = 3κ
4

{︀
(3𝑝− σ) + 𝑘

12
div ξ

}︀
and

3) λ > 3κ
4

{︀
(3𝑝− σ) + 𝑘

12
div ξ

}︀
respectively.

Remark. It is noted that a function 𝑓 : 𝑀 −→ R is said to be harmonic if Δ𝑓 = 0, where
Δ is the Poisson — Laplace operator on 𝑀 [36].

Again, from (34) we turn up

𝑑𝑖𝑣(ξ) =
3

𝑘
(𝑅− γ). (36)

Since 𝑘 ̸= 0 and ξ = grad(Ψ) type, so we get γ = 𝑅 = const, which implies

ΔΨ = 0. (37)

Thus using the above equation and remark (5) we can conclude the following
Theorem 10. If a (𝑀4, 𝑔) be an imperfect fluid 𝐺𝑅𝑊 -spacetime with a gradient vector
field of type ξ = grad(Ψ) admits quasi 𝑘-Yamabe soliton, then the function Ψ is a
harmonic if and only if the value of γ is equal to the scalar curvature 𝑅.
Corollary 4. If a (𝑀4, 𝑔) be an imperfect fluid 𝐺𝑅𝑊 -spacetime with a gradient vector
field of type ξ = grad(Ψ) admits a 𝑘-Yamabe soliton, then the function Ψ is a harmonic
if and only if the scalar curvature 𝑅 = γ.

Therefore we infer the above remark and Theorem 10) we entails the following
Theorem 11. If a (𝑀4, 𝑔) be an imperfect fluid 𝐺𝑅𝑊 -spacetime with a gradient vector
field of type ξ = grad(Ψ) admits a quasi 𝑘-Yamabe soliton and Ψ is a harmonic function,
then the quasi 𝑘-Yamabe soliton is expanding.
Corollary 5. If a (𝑀4, 𝑔) be an imperfect fluid 𝐺𝑅𝑊 -spacetime with a gradient vector
field of type ξ = 𝑔𝑟𝑎𝑑(Ψ) admits a 𝑘-Yamabe soliton and Ψ is a harmonic function, then
the 𝑘-Yamabe soliton is expanding.

6. Physical model of Laplace — Poisson equation

The general theory of solution of Laplace — Poisson equation is known as potential
theory and the solution of Laplacez — Poisson equation are harmonic functions, which are
important in branches of physics, electrostatics, gravitation and fluid dynamics. In modern
physics, there are two fundamental forces of the nature known at the time, namely, grav-
ity and the electrostatics forces, could be modeled using functions called the gravitational
potential and electrostatics potential both of which satisfy Laplace equation.
Example 1. Let us assume the physical phenomena, if Ψ be the gravitational filed, ρ the
mass density and 𝐺 the gravitational constant. The Gauss’s law of gravitational in differen-
tial form is

∇Ψ = −4π𝐺ρ. (38)
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In case of gravitational field, Ψ is conservative and can be expressed as the negative gradient
of gravitational potential, i.e., Ψ = −𝑔𝑟𝑎𝑑𝑓 then by the Gauss’s law of gravitational, we have

∇2𝑓 = 4π𝐺ρ. (39)

This physical phenomena is directly identical to the Theorem (8) and equation (35), which is
a Laplace — Poisson equation with potential vector filed of gradient type i.e ξ = 𝑔𝑟𝑎𝑑(Ψ).

Remark. Also, for ψ ∈ 𝐶∞(𝑀) and the vector field ξ a straight forward calculation gives

div(ψξ) = ξ(𝑑ψ) + ψ div ξ. (40)

The function ψ ∈ 𝐶∞(𝑀) is a last multiplier of vector field ξ with respect to 𝑔 if div(ψξ) =
= 0. The corresponding equation

ξ(𝑑 lnψ) = − div(ξ) (41)

is called the Liouville equation of the vector field ξ with respect to 𝑔 (for more details
see [19]).

Now, infer the above remark and equation (34), we obtain the following result.
Theorem 12. Let (𝑀4, 𝑔) be an imperfect fluid 𝐺𝑅𝑊 -spacetime and η be the 𝑔-dual
1-form of the gradient vector field ξ = grad(Ψ), Ψ ∈ 𝐶∞(𝑀). If (30) defines a quasi
𝑘-Yamabe soliton, then the Liouville equation satisfying by ψ and ξ becomes

ξ(𝑑 lnψ) =
3

𝑘
(γ−𝑅). (42)

7. Significance of Liouville equation in Physics

The Liouville equation, describe the nature of incompressible fluid in phase space.
It explain the evolution of an ensemble or collection of classical system in phase space.
Liouville equation describe the flow of whole distribution, the motion analogous to a dye
in an incompressible fluid, whereas the motion of a system of the ensemble is given by
Hamiltonian equation. Moreover, symmetry is invariance under time translation, and the
generator of symmetry is Hamiltonian. In fact the phase points of ensemble are neither
created nor destroyed. In addition Liouville equation is a persistent for the flux and phase
space density σ assumed as

𝜕σ

𝜕𝑡
= −∇.𝐽−→. (43)
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Аннотация. В статье оценивается поведение несовершенного жидко-
го обобщенного пространства-времени Робертсона — Уолкера (𝐺𝑅𝑊 ) в тер-
минах солитона 𝑘-Ямабе с торсообразующим векторным полем. Кроме того,
рассматривается частный случай, когда потенциальный вектор ξ имеет фор-
му градиента, то есть ξ = grad(Ψ). Нами получено уравнение Лапласа —
Пуассона и уравнение Лиувилля из уравнения квази 𝑘-Ямабе солитона.

Ключевые слова: солитон 𝑘-Ямабе, солитон квази 𝑘-Ямабе, несовершен-
ное жидкое обобщенное пространство-время Робертсона — Уолкера, торсооб-
разующее векторное поле, многообразие Эйнштейна.
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