

DOI: https://doi.org/10.15688/jvolsu1.2016.6.3

УДК 517.53:517.977 ББК 22.161.5

МЕТОД ОПТИМАЛЬНЫХ УПРАВЛЕНИЙ В РЕШЕНИИ ОДНОЙ ВАРИАЦИОННОЙ ЗАДАЧИ

Александр Сергеевич Игнатенко

Старший преподаватель кафедры теории функций, Кубанский государственный университет alexandr.ignatenko@gmail.com ул. Ставропольская, 149, 350040 г. Краснодар, Российская Федерация

Борис Ефимович Левицкий

Кандидат физико-математических наук, доцент кафедры теории функций, Кубанский государственный университет bel@kubsu.ru ул. Ставропольская, 149, 350040 г. Краснодар, Российская Федерация

Аннотация. В работе приводится полное решение вариационной задачи об отыскании поверхности вращения минимальной площади в специальной метрике, возникшей при изучении поведения модуля семейства поверхностей, огибающих препятствия в сферическом кольце. Установлены свойства одного класса гиперэллиптических интегралов, определяющих оптимальные траектории вариационной задачи.

Ключевые слова: минимальные поверхности, поверхности вращения, метод оптимальных управлений, оптимальные траектории, гиперэллиптический интеграл.

1. Введение. Постановка вариационной задачи

В работе приводится доказательство анонсированных в [1] результатов решения вариационной задачи, возникшей при изучении p-модуля семейства поверхностей, отделяющих граничные компоненты кольца при переходе к его подсемейству, состоящему из поверхностей, огибающих принадлежащее кольцу препятствие (континуум).

Рассмотрим семейство плоских кусочно-гладких кривых γ , заданных параметрическим уравнением $z(t)=e^{\rho(t)+i\phi(t)},\ t\in[t_0,t_1]$, лежащих в замкнутом множестве $\overline{B_r}=\{z:r\leq |z|\leq r(1+\delta), \phi\in[\phi_0,\phi_1]\},\ (0<\phi_0<\phi_1\leq\pi)$ и соединяющих точку $z(t_0)=r(1+\delta)e^{i\phi_0}$ с точкой $z(t_1)=r(1+\delta_1)e^{i\phi_1},\ 0\leq\delta_1\leq\delta$.

Площадь поверхности в n-мерном евклидовом пространстве R^n , образованной вращением кривой γ вокруг полярной оси, вычисленная в метрике $\frac{1}{|x|^{n-1}}$, $x \in R^n$, $n \geq 3$, выражается формулой

$$S(\gamma) = (n-1)\omega_{n-1} \int_{t_0}^{t_1} \sin^{n-2} \varphi(t) \sqrt{(\varphi'(t))^2 + (\rho'(t))^2} dt, \tag{1}$$

где ω_n — объем n-мерного шара единичного радиуса.

Задача состоит в отыскании точной нижней грани функционала $S(\gamma)$ на описанном классе кривых при естественном условии, что рассматриваются лишь кривые, для которых в точках дифференцируемости $\varphi'(t) \geq 0$ и $\rho'(t) \leq 0$.

2. Формулировка задачи на языке оптимальных уравнений

Используя терминологию и обозначения, применяемые в [2], сформулируем эквивалентную задачу оптимального управления при ограниченных фазовых координатах.

Пусть в замкнутом подмножестве

$$\overline{B_r} = \{ x = (x^1, x^2) : \varphi_0 \le x^1 \le \varphi_1, \ln r \le x^2 \le \ln r (1 + \delta) \}$$
 (2)

двумерного евклидова пространства X заданы точки $x_0=(\varphi_0,\ln r(1+\delta))$ и $x_1=(\varphi_1,\ln r(1+\delta_1)),\ 0<\varphi_0<\varphi_1\leq\pi.$ Граница прямоугольника $\overline{B_r}$ состоит из отрезков: $P_{\mathbf{v}}=\{x\in X:x^1=\varphi_{\mathbf{v}},\ln r\leq x^2\ln r(1+\delta)\},\ \mathbf{v}=0,1,\ P_2=\{x\in X:\varphi_0\leq x^1\leq\varphi_1,x^2=\ln r\}$ и $P_3=\{x\in X:\varphi_0\leq x^1\leq\varphi_1,x^2=\ln r(1+\delta)\}.$

Зададим кусочно-непрерывную функцию

$$g(x) = \begin{cases} \varphi_0 - x^1 & \text{в окрестности } P_0; \\ x^1 - \varphi_1, & \text{в окрестности } P_1; \\ \ln r - x^2, & \text{в окрестности } P_2; \\ x^2 - \ln r(1 + \delta), & \text{в окрестности } P_3. \end{cases}$$
 (3)

Заметим, что в окрестности границы множество $\overline{B_r}$ может быть задано неравенством q(x) < 0.

В области управления U, состоящей из кусочно-непрерывных, кусочно-гладких вектор-функций $u=(u^1,u^2)$, определенных на отрезке $[t_0,t_1]$ и таких, что $q_r(u)\leq 0$, где

$$q_r(u) = \begin{cases} -u^1, & \text{в окрестности } u^1 = 0, \\ u^2, & \text{в окрестности } u_2 = 0, \end{cases}$$
 (4)

требуется найти (оптимальное) управление, переводящее фазовую точку из положения x_0 в положение x_1 вдоль (оптимальной) траектории, лежащей в $\overline{B_r}$ и определенной системой уравнений

$$\begin{cases} \frac{dx^1}{dt} = u^1\\ \frac{dx^2}{dt} = u^2 \end{cases}$$
 (5)

так, что функционал

$$x^{0} = \int_{t_{0}}^{t^{1}} f^{0}(x, u)dt, \tag{6}$$

где $f^0(x,u) = \sin^{n-2} x^1 \sqrt{(u^1)^2 + (u^2)^2}$ принимает наименьшее значение.

Условимся о следующих обозначениях. Область возможных значений (ϕ_0, ϕ_1) разобьем на четыре подмножества:

$$D_1 = \{(\varphi_0, \varphi_1): 0 < \varphi_0 < \frac{\pi}{2}, \varphi_0 < \varphi_1 \leq \frac{\pi}{2}\},$$

$$D_2 = \{(\varphi_0, \varphi_1): 0 < \varphi_0 < \frac{\pi}{2}, \frac{\pi}{2} < \varphi_1 \leq \pi - \varphi_0\},$$

$$D_3 = \{(\varphi_0, \varphi_1): 0 < \varphi_0 < \frac{\pi}{2}, \pi - \varphi_0 < \varphi_1 \leq \pi\},$$

$$D_4 = \{(\varphi_0, \varphi_1): \frac{\pi}{2} \leq \varphi_0 < \pi, \varphi_0 < \varphi_1 \leq \pi\}.$$
Положим

$$H(t,a) = \frac{a}{\sqrt{\sin^{2(n-2)} t - a^2}},\tag{7}$$

$$h_{\nu}(\varphi_0, \varphi_1) = \int_{\varphi_0}^{\varphi_1} \frac{\sin^{n-2} \varphi_{\nu}}{\sqrt{\sin^{2(n-2)} t - \sin^{2(n-2)} \varphi_{\nu}}} dt, \nu = 0, 1,$$
 (8)

$$h(\varphi_0, \varphi_1) = \begin{cases} h_0(\varphi_0, \varphi_1), & \text{если } (\varphi_0, \varphi_1) \in D_1 \cup D_2; \\ h_1(\varphi_0, \varphi_1), & \text{если } (\varphi_0, \varphi_1) \in D_3 \text{ или } (\varphi_0, \varphi_1) \in D_4, \end{cases}$$
(9)

$$h(a, \varphi_0, \varphi_1) = \int_{\varphi_0}^{\varphi_1} \frac{a}{\sqrt{\sin^{2(n-2)} t - a^2}} dt, \tag{10}$$

$$h(\varphi_0) = \int_{\varphi_0}^{\frac{\pi}{2}} \frac{\sin^{n-2} \varphi_0}{\sqrt{\sin^{2(n-2)} t - \sin^{2(n-2)} \varphi_0}} dt.$$
 (11)

Функции $h_{\nu}(\varphi_0, \varphi_1)$, $\nu = 0, 1$ рассматриваются в областях, определенных в (9), так как подкоренное выражение $\sin^{2(n-2)} t - \sin^{2(n-2)} \varphi_{\nu}$ в них принимает неотрицательные значения, и несобственные интегралы сходятся.

Отметим некоторые полезные в дальнейшем свойства специальных функций, определенных равенствами (8)–(11).

Лемма 1. Имеют место следующие соотношения и свойства:

1. Для любого $\varphi_0 \in (0,\pi)$

$$h_1(\varphi_0, \varphi_1) = \begin{cases} 2h(\pi - \varphi_1) - h_0(\pi - \varphi_1, \varphi_0), & \textit{ecnu } \varphi_0 \in (0, \frac{\pi}{2}), \\ h_0(\pi - \varphi_1, \pi - \varphi_0), & \textit{ecnu } \varphi_0 \in [\frac{\pi}{2}, \pi). \end{cases}$$
(12)

2. Если $0<\phi_0<\phi_1<\frac{\pi}{2}$, то

$$\lim_{\varphi_0 \to 0+} h_0(\varphi_0, \varphi_1) = \lim_{\varphi_0 \to \varphi_1 \to 0} h_0(\varphi_0, \varphi_1) = 0$$
(13)

и

$$h^*(\varphi_1) = \sup_{\varphi_0} h_0(\varphi_0, \varphi_1) = h_0(\varphi_0^*, \varphi_1), \tag{14}$$

где $\phi_0^* = \phi_0^*(\phi_1)$ является корнем уравнения

$$\int_{\varphi_0^*}^{\varphi_1} \frac{dt}{\cos^2 t \sqrt{\sin^{2(n-2)} t - \sin^{2(n-2)} \varphi_0^*}} = \frac{\operatorname{tg} \varphi_1}{\sqrt{\sin^{2(n-2)} \varphi_1 - \sin^{2(n-2)} \varphi_0^*}}.$$
 (15)

3. $h(\phi_0)$ возрастает на интервале $(0,\frac{\pi}{2})$ и

$$h^*(\frac{\pi}{2}) = \sup_{\varphi_0} h(\varphi_0) = \Delta_n = \frac{\pi}{2\sqrt{n-2}}.$$
 (16)

4. $h_1(\phi_0,\phi_1)$ убывает как функция ϕ_1 на интервале $\phi_1\in(\pi-\phi_0,\pi)$ при фиксированном $\phi_0\in(0,\frac{\pi}{2})$, причем

$$\tilde{h}(\varphi_0) = \sup_{\varphi_1} h_1(\varphi_0, \varphi_1) = \begin{cases} 2h(\varphi_0), & \textit{если } \varphi_0 \in (0, \frac{\pi}{2}), \\ h^*(\pi - \varphi_0), & \textit{если } \varphi_0 \in [\frac{\pi}{2}, \pi). \end{cases}$$
(17)

5. Функция $h(a, \varphi_0, \varphi_1)$ монотонно возрастает по переменной a на промежутке $(0, \min(\sin^{n-2}\varphi_0, \sin^{n-2}\varphi_1))$, причем $\sup_a h(a) = h(\varphi_0, \varphi_1)$.

Доказательство. Первое свойство следует из симметричности значений функции $H(t,\sin^{n-2}\alpha)$ для $\alpha\in(0,\frac{\pi}{2})$ и $\alpha\in(\frac{\pi}{2},\pi)$.

Для изучения поведения функции $h_0(\varphi_0,\varphi_1)$ осуществим в интеграле (8) замену переменной по формуле $y=\frac{\sin t}{\sin \varphi_0}$. Полагая $b=b(\varphi_0)=\frac{1}{\sin \varphi_0}$, получаем

$$h_0(\varphi_0, \varphi_1) = \tilde{h}(b, \varphi_1) = \int_1^{b \sin \varphi_1} \frac{dy}{\sqrt{(y^{2(n-2)} - 1)(b^2 - y^2)}}.$$
 (18)

В частности, $h(\phi_0) = \tilde{h}(b, \frac{\pi}{2}) = \tilde{h}(b)$.

Еще одна замена переменной $y=1+(b\sin\phi_1-1)\sin^2\phi$ позволяет представить эту функцию в виде собственного интеграла от непрерывно дифференцируемой по параметру b функции

$$\tilde{H}(\psi, b, \varphi_1) = \frac{2\sqrt{b\sin\varphi_1 - 1}\cos\psi\left(\sum_{k=1}^{2(n-2)} C_{2(n-2)}^k (b\sin\varphi_1 - 1)^{k-1}\sin^{2(k-1)}\psi\right)^{-\frac{1}{2}}}{\left(\cos^2\psi\left((b^2 - 1) + (b-1)\sin^2\psi + 1 - \sin\varphi_1\right) + \cos^2\varphi_1\right)^{\frac{1}{2}}}$$

Поскольку $\lim_{\phi_0 \to 0+} h_0(\phi_0, \phi_1) = 0$ и

$$\lim_{\phi_0 \to \phi_1 = 0} h_0(\phi_0, \phi_1) = \lim_{b \to \frac{1}{\sin \phi_1}} \tilde{h}(b, \phi_1) =$$

$$= \int_0^{\frac{\pi}{2}} \lim_{b \to \frac{1}{\sin \phi_1}} \tilde{H}(\psi, b, \phi_1) d\psi = \begin{cases} 0, & \text{если } \phi_1 < \frac{\pi}{2}, \\ \frac{\pi}{2\sqrt{n-2}}, & \text{если } \phi_1 = \frac{\pi}{2}, \end{cases}$$

то при $\varphi_1<\frac{\pi}{2}$ непрерывно дифференцируемая функция $\tilde{h}(b,\varphi_1)$ достигает своего максимума в точке $b^*=b^*(\varphi_1)\in(0,\varphi_1)$, для которой $\frac{\partial \tilde{h}}{\partial b}(b^*,\varphi_1)=0$, то есть b^* — корень уравнения

$$\int_{1}^{b\sin\varphi_{1}} \frac{b^{2}dy}{\sqrt{y^{2(n-2)}-1} (b^{2}-y^{2})^{\frac{3}{2}}} = \frac{tg\varphi_{1}}{\sqrt{(b\sin\varphi_{1})^{2(n-2)}-1}} .$$
 (19)

Отсюда следует, что $\sup_{\varphi_0}h_0(\varphi_0,\varphi_1)=h_0(\varphi_0^*,\varphi_1)=h^*(\varphi_1)$, где φ_0^* является корнем уравнения (15). Далее, так как $\tilde{h}'(b)=\int\limits_0^{\frac{\pi}{2}}\frac{\partial \tilde{H}}{\partial b}(\psi,b,\frac{\pi}{2})d\psi<0$, то $\tilde{h}(b)$ убывает, а значит $h(\varphi_0)$ возрастает на интервале $(0,\frac{\pi}{2})$. Для $\varphi_0\in(0,\frac{\pi}{2})$ и $\varphi_1\in(\pi-\varphi_0,\pi)$, учитывая $2\int\limits_0^{\frac{\pi}{2}}H(t,\sin^{n-2}\varphi_1)dt\equiv 2h(\sin^{n-2}\varphi_1,\varphi_0,\frac{\pi}{2})$, имеем

$$h_1(\varphi_0, \varphi_1) = 2 \int_{\varphi_0}^{\frac{\pi}{2}} H(t, \sin^{n-2} \varphi_1) dt + h_0(\pi - \varphi_1, \varphi_0) = 2h(\pi - \varphi_1) - h_0(\pi - \varphi_1, \varphi_0).$$

Из того, что $\frac{\partial h_1}{\partial \varphi_1}(\varphi_0, \varphi_1) < 0$ и $\lim_{\varphi_1 \to \pi - \varphi_0} h_1(\varphi_0, \varphi_1) = 2h(\varphi_0)$ вытекают свойства 3 и 4. Свойство 5 доказывается аналогично.

Замечание 4. Функция $h_0(\phi_0,\phi_1)=\tilde{h}(b,\phi_1)=\int_1^{b\sin\phi_1}\frac{dy}{\sqrt{(y^{2(n-2)}-1)(b^2-y^2)}}$ представляет собой класс гиперэллиптических интегралов, определяющих оптимальные траектории вариационной задачи.

3. Решение вариационной задачи

Дадим полное описание оптимальных траекторий рассматриваемой задачи. Определим

$$\Delta_{1}(\delta, \varphi_{0}, \varphi_{1}) = (1 + \delta)e^{-h(\varphi_{0}, \varphi_{1})} - 1;
\Delta_{1}(\delta, \varphi_{0}) = (1 + \delta)e^{-\tilde{h}(\varphi_{0})} - 1;
\Delta(\varphi_{0}, \varphi_{1}) = e^{h(\varphi_{0}, \varphi_{1})} - 1;
\Delta(\varphi_{0}) = e^{\tilde{h}(\varphi_{0})} - 1.$$

Теорема 1. В задаче оптимального управления (2)–(6) оптимальными могут быть лишь следующие траектории:

1. Граничная траектория γ_0 , состоящая из отрезков $\{(x^1,x^2): \varphi_0 \leq x^1 \leq \varphi_1; x^2 = \ln r(1+\delta)\}$ и $\{(x^1,x^2): x^1 = \varphi_1; \ln r(1+\delta_1) \leq x^2 \leq \ln r(1+\delta)\}.$

2. При $\delta_1 \in [0, \Delta_1(\delta, \phi_0, \phi_1))$ имеем:

2.1 в случае $(\varphi_0, \varphi_1) \in D_1 \cup D_2$ оптимальной «внутренней» может быть лишь траектория γ_1 , состоящая из кривой $\gamma_1(\varphi_0, \varphi_1)$:

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi_{1}} H(t, \sin^{n-2} \varphi_{0}) dt + \ln r(1 + \delta_{1}), \\ x^{1}(t) = t \in [\varphi_{0}, \varphi_{1}] \end{cases}$$
 (20)

и отрезка

$$\{(x^1, x^2) : x^1 = \varphi_0; \ln r(1 + \delta_1) + h_0(\varphi_0, \varphi_1) \le x^2 \le \ln r(1 + \delta)\}; \tag{21}$$

2.2 в частности, если $\varphi_1 = \pi - \varphi_0$, то оптимальной может быть любая траектория $\tilde{\gamma}_1$, состоящая из кривой $\tilde{\gamma}_1(\varphi_0, \delta', \delta'_1)$:

$$\begin{cases} x^{2}(t) = \int_{t}^{\pi - \varphi_{0}} H(t, \sin^{n-2} \varphi_{0}) dt + \ln r(1 + \delta'_{1}), \\ x^{1}(t) = t \in [\varphi_{0}, \pi - \varphi_{0}] \end{cases}$$
(22)

и двух отрезков

$$\{(x^{1}, x^{2}) : x^{1} = \varphi_{0}; \ln r(1 + \delta') \le x^{2} \le \ln r(1 + \delta)\},$$

$$\{(x^{1}, x^{2}) : x^{1} = \pi - \varphi_{0}; \ln r(1 + \delta_{1}) \le x^{2} \le \ln r(1 + \delta'_{1})\},$$
(23)

где $\delta_1 \leq \delta_1' < \delta' \leq \delta$ связаны соотношением

$$\ln \frac{1+\delta'}{1+\delta'_1} = 2h(\varphi_0);$$
(24)

2.3 в случае $(\varphi_0, \varphi_1) \in D_3$ или $(\varphi_0, \varphi_1) \in D_4$ оптимальной «внутренней» может быть лишь траектория γ_2 , состоящая из кривой $\gamma_2(\varphi_0, \varphi_1)$:

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi_{1}} H(t, \sin^{n-2} \varphi_{1}) dt + \ln r (1 + \Delta_{1}(\delta, \varphi_{0}, \varphi_{1})), \\ x^{1}(t) = t \in [\varphi_{0}, \varphi_{1}] \end{cases}$$
 (25)

и отрезка

$$\{(x^1, x^2) : x^1 = \varphi_1; \ln r(1 + \delta_1) \le x^2 \le \ln r(1 + \Delta_1(\delta, \varphi_0, \varphi_1))\}. \tag{26}$$

3. При $\delta_1 \ge \max(0, \Delta_1(\delta, \varphi_0, \varphi_1))$ имеем:

3.1 в случае $\delta_1>0$ оптимальной «внутренней» может быть лишь траектория $\gamma_3(\phi_0,\phi_1)$:

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi_{1}} H(t, a) dt + \ln r(1 + \delta_{1}), \\ x^{1}(t) = t \in [\varphi_{0}, \varphi_{1}], \end{cases}$$
 (27)

где а является единственным корнем уравнения

$$\ln \frac{1+\delta}{1+\delta_1} = h(a, \varphi_0, \varphi_1); \tag{28}$$

 $3.2\ в\ случае\ \delta_1=0\ оптимальной\ «внутренней» может быть лишь траектория <math>\tilde{\gamma}_3$, состоящая из кривой $\tilde{\gamma}_3(\phi_0)$:

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi'_{1}} H(t, \sin^{n-2} \varphi'_{1}) dt + \ln r, \\ x^{1}(t) = t \in [\varphi_{0}, \varphi'_{1}], \end{cases}$$
 (29)

где φ_1' является принадлежащим промежутку (φ_0, φ_1) корнем уравнения

$$\ln(1+\delta) = \int_{\varphi_0}^{\varphi_1'} H(t, \sin^{n-2} \varphi_1') dt, \tag{30}$$

и отрезка $\{(x^1, x^2) : \varphi_1' \le x^1 \le \varphi_1; x^2 = \ln r\}.$

Доказательство. В силу принципа максимума Л.С. Понтрягина для оптимальности управления u(t) и траектории x(t) на участке $t \in [\tau_0, \tau_1]$ целиком, кроме концов $x_0' = (\varphi_0, \ln r(1+\delta')), x_1' = (\varphi_1', \ln r(1+\delta_1')),$ лежащем в открытом множестве B_r , необходимо существование ненулевой непрерывной вектор-функции $\psi(t) = (\psi_1(t), \psi_2(t)),$ такой что

$$\begin{cases} \frac{\partial \psi_1}{\partial t} = \frac{\partial f_0}{\partial x^1} = (n-2)\sin^{n-3}x^1\cos x^1\sqrt{(u^1)^2 + (u^2)^2} \\ \frac{\partial \psi_2}{\partial t} = 0 \end{cases}$$
(31)

и функция

$$K(\psi, x, u) = -f^{0}(x, u) + \psi_{1}u^{1} + \psi_{2}u^{2}$$
(32)

достигает в точке u(t) максимума, причем

$$K(\psi(t), x(t), u(t)) = 0.$$
 (33)

Таким образом, если u(t) — оптимальное управление, то

$$\begin{cases} \frac{\partial K}{\partial u^{1}} = -\frac{u^{1}\sin^{n-2}x^{1}}{\sqrt{(u^{1})^{2} + (u^{2})^{2}}} + \psi_{1} = 0, \\ \frac{\partial K}{\partial u^{2}} = -\frac{u^{2}\sin^{n-2}x^{1}}{\sqrt{(u^{1})^{2} + (u^{2})^{2}}} + \psi_{2} = 0, \end{cases}$$
(34)

откуда следует, что

$$\begin{cases} \psi_1 = \frac{u^1 \sin^{n-2} x^1}{\sqrt{(u^1)^2 + (u^2)^2}}, \\ \psi_2 = \frac{u^2 \sin^{n-2} x^1}{\sqrt{(u^1)^2 + (u^2)^2}} = c, \end{cases}$$
(35)

причем $sign(c) = sign(u^2)$.

Замечая, что

$$\psi_1 = egin{cases} rac{u^1}{u^2}c, & ext{если } c
eq 0, \ ext{sign}(u^1)\sin^{n-2}x^1, & ext{если } c = 0, \end{cases}$$

в силу (35) находим, что либо $u^2=0$ (если c=0), либо (если $c\neq 0$) $u^2\neq 0$ и

$$\frac{|u^1|}{u^2} = \frac{1}{c} \sqrt{\sin^{2(n-2)} x^1 - c^2}.$$
 (36)

В первом случае $x^2=\mathrm{const}$, то есть для $t\in [au_0, au_1]$ $x^2(t)=\ln r(1+\delta')=\ln r(1+\delta'_1)$ и $\delta'=\delta'_1.$

Во втором случае либо $u^1=0$ и тогда $-c=\sin^{n-2}\phi_0\equiv\sin^{n-2}x^1$, $\phi_1'=\phi_0$, либо (если $u^1\neq 0$) c=-a<0 и

$$\frac{dx^2}{dx^1} = H(x^1, a). \tag{37}$$

Это означает, что оптимальная траектория может быть задана в явном виде $x^2=x^2(x^1)$ при любом допустимом управлении u^1 , то есть в этом случае можно полагать $u^1=1$ и $x^1(t)=t$, где $t\in [\tau_0,\tau_1],\ \tau_0=\phi_0<\tau_1=\phi_1'\leq \pi$. Тогда на этом участке (оптимальная) траектория, соответствующая управлению u=(1,-H(t,a)), имеет вид

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi'_{1}} H(t, a) dt + \ln r (1 + \delta'_{1}), \\ x^{1}(t) = t \in [\varphi_{0}, \varphi'_{1}], \end{cases}$$
(38)

где значение a определяется из условия

$$\int_{\varphi_0}^{\varphi_1'} H(t, a) dt = \ln \frac{1 + \delta'}{1 + \delta_1'}.$$
 (39)

Из (38) и (39) следует, что ни один из кусков оптимальных траекторий, лежащих внутри B_r , не может начинаться и заканчиваться на одном и том же отрезке границы.

Для проверки условий скачка в точке стыка $t=\tau_0=\phi_0$ заметим, что $\operatorname{grad}(g(x))==(-1,0)$ в окрестности отрезка P_0 , $\operatorname{grad}(q_r(u))=(-1,0)$ в окрестности управления $u^1=0$ и $p(x,u)=(\operatorname{grad}(g(x)),u)=-u^1$ в окрестности отрезка P_0 , причем $p(x,u)\equiv 0$ на P_0 .

В соответствии с граничным принципом максимума [2] существует непрерывная вектор-функция $\psi = (\psi_1(t), \psi_2(t))$ и кусочно-непрерывная кусочно-гладкая функция $\lambda(t)$ ($\tau_0 \le t \le t_0$) такие, что для $f^0(x,u) = -\sin^{n-2}\phi_0 \cdot u^2$ имеем

$$\begin{cases} \frac{d\psi_1}{dt} = -\frac{\partial K}{\partial x^1} + \lambda(t) \frac{\partial p(x,u)}{\partial x^1} = 0, \\ \frac{d\psi_2}{dt} = 0, \end{cases}$$

и функция (32) достигает в точке $u=(0,u^2)$ условного максимума. Отсюда следует, что

$$\begin{cases} \psi_1 = -\lambda - \nu, \\ \sin^{n-2} \phi_0 + \psi_2 = 0, \end{cases}$$

причем $\sin^{n-2} \varphi_0 \cdot u^2(t) + \psi_2(t) \cdot u^2(t) = 0.$

Таким образом, $\psi_2(t) = -\sin^{n-2} \varphi_0$.

Поскольку вектор $\psi(\tau_0) \neq 0$ и касается границы P_0 в точке $x(\tau_0)$, то

$$(\psi(\tau_0), \operatorname{grad}(g(x(\tau_0))) = -(\lambda + \nu) = 0,$$

а значит $\psi_1=0$. Так как оптимальная траектория на P_0 определяется однозначно и представляет собой отрезок $\{(x^1,x^2): x^1=\varphi_0, \ln r(1+\delta')\leq x^2\leq \ln r(1+\delta)\}$, то оптимальным является любое управление, соответствующее его допустимой параметризации, например, $u^2(t)=-1, \ x^2(t)=-t+c_0$, где $c_0=\varphi_0+\ln r(1+\delta')$ и $t_0=\varphi_0-\ln\frac{1+\delta}{1+\delta'}$.

Условия скачка в точке стыка $t = \varphi_0$ состоят в выполнении одного из равенств [2]:

$$\psi^{+}(\phi_0) = \psi^{-}(\phi_0) \tag{40}$$

ИЛИ

$$\psi^{-}(\varphi_0) + \mu \operatorname{grad}(g(x(\varphi_0))) = 0, \mu \neq 0. \tag{41}$$

Если на участке $[\tau_0, \tau_1] = [\varphi_0, \varphi_1']$ оптимальное управление u(t) = (1,0), то из (35) следует, что $\psi_1^+(\varphi_0) = \sin^{n-2}\varphi_0$, $\psi_2^+(\varphi_0) = 0$, и условие (40) имеет вид $\sin^{n-2}\varphi_0 = 0$, то есть не выполняется, если $0 < \varphi_0 < \pi$.

Условие (41) записывается в виде

$$\begin{cases} 0 + \mu \cdot 1 = 0, \\ -\sin^{n-2} \varphi_0 + \mu \cdot 0 = 0, \end{cases}$$

то есть не выполняется для внутренних точек P_0 .

Таким образом, оптимальной на участке $[au_0, au_1]$ может быть либо граничная траектория

$$\{(x^1, x^2) : \varphi_0 \le x^1 \le \varphi_1', x^2 = \ln r(1+\delta)\} \subset P_3, \tag{42}$$

либо траектория (38), соответствующая (оптимальному) управлению u(t)=(1,-H(t,a)), где a определяется из соотношения (39). В этом случае $\psi_1^+(\phi_0)=\sqrt{\sin^{2(n-2)}\phi_0-a^2}$, $\psi_2^+(\phi_0)=-a$, и уравнения (40) имеют вид $\sqrt{\sin^{2(n-2)}\phi_0-a^2}=0$, $-a=-\sin^{n-2}\phi_0$, то есть выполняются только если $a=\sin^{n-2}\phi_0$. Уравнения (41) не могут быть выполнены. Если $0<\phi_0<\frac{\pi}{2}$, то из (38) следует, что оптимальная траектория может иметь точку стыка на отрезке P_0 , только если $\phi_1'\leq\pi-\phi_0$.

Рассмотрим случай, когда $\tau_0=t_0=\phi_0$, $\tau_1=\phi_1'$, $\delta'=\delta_1'=\delta$ и (оптимальная) траектория начинается с отрезка (42). Предположим, что при $t\in [\tau_1,\tau_2]$ участок оптимальной траектории лежит внутри B_r и соединяет точки $(\phi_1',\ln r(1+\delta))$ и $(\phi_1'',\ln r(1+\delta_1''))$. Из приведенных выше рассуждений следует, что либо $\phi_1''=\phi_1'$ и траектория, соответствующая (оптимальному) управлению $u(t)=(0,u^2)$, представляет собой отрезок

$$\{(x^1, x^2) : x^1 = \varphi_1', \ln r(1 + \delta_1'') \le x^2 \le \ln r(1 + \delta)\},\$$

либо $\varphi_1'' \neq \varphi_1'$ и управление u = (1, -H(t, a)) определяет (оптимальную) траекторию

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi_{1}''} H(t, a) dt + \ln r (1 + \delta_{1}''), \\ x^{1}(t) = t \in [\varphi_{1}', \tau_{2} = \varphi_{1}''], \end{cases}$$

причем значение а удовлетворяет уравнению

$$\int_{\varphi_1'}^{\varphi_1''} H(t, a) dt = \ln \frac{1 + \delta}{1 + \delta_1''}.$$

Непосредственная проверка условий (40) и (41) в точке стыка $\tau_1 = \varphi_1'$ в обоих случаях показывает, что эти условия не могут быть выполнены, то есть граничная траектория, лежащая в P_3 , не может иметь точки стыка с траекторией, принадлежащей B_r .

Таким образом, точка $\tau_1 = \varphi_1'$ может быть точкой стыка оптимальной траектории, только если $\varphi_1' = \varphi_1$, то есть отрезок P_3 стыкуется с отрезком P_1 , и получаем граничную траекторию γ_0 .

Предположим теперь, что $\varphi_0 \in \left(0, \frac{\pi}{2}\right)$. Пусть $\varphi_1' \leq \pi - \varphi_0$ и оптимальная траектория имеет точку стыка на P_0 , то есть ее часть, лежащая в B_r , задается уравнением

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi'_{1}} H(t, \sin^{n-2} \varphi_{0}) dt + \ln r(1 + \delta'_{1}), \\ x^{1}(t) = t \in (\varphi_{0}, \varphi'_{1}), \end{cases}$$

причем

$$\int_{\varphi_0}^{\varphi_1'} H(t, \sin^{n-2} \varphi_0) dt = \ln \frac{1 + \delta'}{1 + \delta_1'}.$$

Поскольку оптимальная траектория не может иметь изломов внутри области B_r (не выполняются условия Вейерштрасса — Эрдмана, эквивалентные соотношениям (40)), то либо $\varphi_1' = \varphi_1$ и $\delta_1' \in [\delta_1, \delta')$, либо $\delta_1' = 0$, то есть либо конец траектории принадлежит отрезку P_1 , либо отрезку P_2 .

Проверка условий скачка в точке $\tau_1=\varphi_1'=\varphi_1$ показывает, что условие (40) выполняется, только если $\sin^{n-2}\varphi_1=\sin^{n-2}\varphi_0$, то есть $\varphi_1=\pi-\varphi_0$. При этом δ' и δ'_1 связаны соотношением (24), которое может быть выполнено только если $\delta_1\in [0,\Delta_1(\delta',\varphi_0)]$. В этом случае δ' должно быть не меньше, чем $\Delta(\varphi_0)$. При выполнении

этих условий оптимальной может быть любая траектория $\tilde{\gamma}_1$, заданная уравнениями (22), (23) и соотношением (24).

В случае $\delta_1'=0$ проверка выполнения условий скачка показывает, что условие (40) не выполняется, а (41) может быть выполнено, только если $\phi_1'=\pi-\phi_0$.

Таким образом, при $\delta_1 \in [0, \Delta_1(\delta', \varphi_0)]$ ($\delta' \geq \Delta(\varphi_0)$) точкой стыка на P_2 может быть только точка $(\pi - \varphi_0, \ln r)$, что соответствует значениям $\delta_1 = 0$ и $\delta' = \Delta(\varphi_0)$. Утверждение 2.2 теоремы установлено.

Заметим, что оптимальная траектория может иметь две точки стыка на отрезках P_0 и P_1 , только если $\phi_1=\pi-\phi_0$ и $\delta_1\in(0,\Delta_1(\delta,\phi_0))$. Следовательно, при $\delta\leq\Delta(\phi_0)$ точки стыка на P_0 не может быть.

Рассмотрим случай $\varphi_0 \in (0, \frac{\pi}{2})$ и $\varphi_1 < \pi - \varphi_0$. Предположим, что оптимальная траектория имеет точку стыка на P_0 , но не имеет точки стыка на P_1 . Тогда ее часть, лежащая в B_r , задается уравнениями

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi_{1}} H(t, \sin^{n-2} \varphi_{0}) dt + \ln r(1 + \delta_{1}), \\ x^{1}(t) = t \in [\varphi_{0}, \varphi_{1}], \end{cases}$$

причем

$$\int_{\varphi_0}^{\varphi_1} H(t, \sin^{n-2} \varphi_0) dt = \ln \frac{1 + \delta'}{1 + \delta_1},$$

откуда следует, что $\delta'=(1+\delta_1)e^{h_0(\phi_0,\phi_1)}-1$ и оптимальной является траектория γ_1 . Это возможно, только если $0\leq \delta_1\leq \delta'<\delta$, то есть для $\delta_1\in [0,\Delta_1(\delta,\phi_0,\phi_1))$. Таким образом, установлено утверждение 1.1.

Если $(\varphi_0, \varphi_1) \in D_3$ или $(\varphi_0, \varphi_1) \in D_4$, то точки стыка на P_0 не может быть. Выясним, при каких условиях оптимальная траектория может иметь точку стыка на P_1 . Из (38) и (39) следует, что оптимальная траектория имеет вид

$$\begin{cases} x^{2}(t) = \int_{t}^{\varphi_{1}} H(t, a) dt + \ln r (1 + \delta'_{1}), \\ x^{1}(t) = t \in [\varphi_{0}, \varphi_{1}], \end{cases}$$

где значение а определяется из условия

$$\int_{\varphi_0}^{\varphi_1} H(t, a) dt = \ln \frac{1 + \delta}{1 + \delta_1'}.$$

Проверка условий скачка в точке стыка $t=\varphi_1$ показывает, что уравнения (40) могут быть выполнены, только если $a=\sin^{n-2}\varphi_1$, а уравнения (41) не выполняются. Таким образом, оптимальной траекторией, имеющей точку стыка на P_2 , может быть лишь траектория γ_2 . При этом $\delta_1'=\Delta_1(\delta,\varphi_0,\varphi_1)$, что возможно только если $\delta_1'\in [0,\Delta_1(\delta,\varphi_0,\varphi_1))$.

Остается рассмотреть случай $\delta_1 \geq \max(0, \Delta_1(\delta, \phi_0, \phi_1))$. При таком условии точек стыка на P_0 и P_1 не может быть.

Если $\delta_1>0$, то оптимальной траекторией может быть лишь траектория $\gamma_3=\gamma_3(\phi_0,\phi_1)$. В силу свойства 5 из леммы 1 уравнение (28) имеет единственное решение при любом таком δ_1 .

Если $\delta_1=0$, то оптимальная траектория может иметь точку стыка $x_1'=(\varphi_1',\ln r)\in P_2$. В этом случае она состоит из кривой

$$\begin{cases} x^2(t) = \int_t^{\varphi_1'} H(t, a) dt, \\ x^1(t) = t \in [\varphi_0, \varphi_1'] \end{cases}$$

и отрезка

$$\{(x^1, x^2) : \varphi_1' \le x^1 \le \varphi_1, x^2 = \ln r\} \in P_2.$$

Проверяя условия скачка в точке $t=\varphi_1'$, находим, что условие (40) выполняется, только если $a=\sin^{n-2}\varphi_1'$. Поскольку

$$\int_{\varphi_0}^{\varphi_1'} H(t, \sin^{n-2} \varphi_1') dt = \ln(1+\delta),$$

то значение ϕ_1' является принадлежащим промежутку (ϕ_0,ϕ_1) корнем уравнения. Теорема доказана.

4. Сравнение и оценки площадей минимальных поверхностей, образованных вращением оптимальных траекторий

Вычислим значения функционала $S(\gamma)$ для кривых, являющихся оптимальными траекториями рассматриваемой вариационной задачи.

Лемма 2. В условиях и обозначениях теоремы 1:

1.
$$S(\gamma_0) = (n-1)\omega_{n-1} \left[\int_{\varphi_0}^{\varphi_1} \sin^{n-2}t dt + \sin^{n-2}\varphi_1 \cdot \ln \frac{1+\delta}{1+\delta_1} \right];$$

2. $S(\gamma_1) = (n-1)\omega_{n-1} \left[\int_{\varphi_0}^{\varphi_1} \sqrt{\sin^{2(n-2)}t - \sin^{2(n-2)}\varphi_0} dt + \sin^{n-2}\varphi_0 \cdot \ln \frac{1+\delta}{1+\delta_1} \right];$
3. $S(\tilde{\gamma}_1) = (n-1)\omega_{n-1} \left[2 \int_{\varphi_0}^{\frac{\pi}{2}} \sqrt{\sin^{2(n-2)}t - \sin^{2(n-2)}\varphi_0} dt + \sin^{n-2}\varphi_0 \cdot \ln \frac{1+\delta}{1+\delta_1} \right];$
4. $S(\gamma_2) = (n-1)\omega_{n-1} \left[\int_{\varphi_0}^{\varphi_1} \sqrt{\sin^{2(n-2)}t - \sin^{2(n-2)}\varphi_1} dt + \sin^{n-2}\varphi_1 \cdot \ln \frac{1+\delta}{1+\delta_1} \right];$
5. $S(\gamma_3) = (n-1)\omega_{n-1} \left[\int_{\varphi_0}^{\varphi_1} \sqrt{\sin^{2(n-2)}t - a^2} dt + a \cdot \ln \frac{1+\delta}{1+\delta_1} \right];$
6. $S(\gamma_2) = (n-1)\omega_{n-1} \left[\int_{\varphi_0}^{\varphi_1'} \sqrt{\sin^{2(n-2)}t - \sin^{2(n-2)}\varphi_1'} dt + \sin^{n-2}\varphi_1' \cdot \ln(1+\delta) + \int_{\varphi_1'}^{\varphi_1} \sin^{n-2}t dt \right].$

Сравнение значений площадей оптимальных траекторий показывает, что для $\phi_1 < \pi$ граничная траектория γ_0 не может быть оптимальной.

Теорема 2. В задаче оптимального управления (2)-(6) в случае $\varphi_1 < \pi$ оптимальными при соответствующих (см. теорему 1) значениях φ_0 , φ_1 и δ_1 являются траектории γ_1 , $\tilde{\gamma}_1$, γ_2 , γ_3 и $\tilde{\gamma}_3$.

Доказательство следует из проверки достаточных признаков экстремальности для указанных траекторий.

СПИСОК ЛИТЕРАТУРЫ

- 1. Игнатенко, А. С. Метод оптимальных управлений в решении вариационной задачи для модулей семейств поверхностей, огибающих препятствие в сферическом кольце / А. С. Игнатенко, Б. Е. Левицкий // Тр. мат. центра им. Н.И. Лобачевского. 2002. Т. 13. С. 64–70.
- 2. Понтрягин, Л. С. Математическая теория оптимальных процессов / Л. С. Понтрягин, В. Г. Болтянский. М. : Наука, 1983. 393 с.

REFERENCES

- 1. Ignatenko A.S., Levitskiy B.E. Metod optimalnykh upravleniy v reshenii variatsionnoy zadachi dlya moduley semeystv poverkhnostey, ogibayushchikh prepyatstvie v sfericheskom koltse [Method of Optimal Control in the Solution of the Variational Problem for the Modules of Families of the Surfaces That Bend Around Obstacles in a Spherical Ring]. *Tr. mat. tsentra im. N.I. Lobachevskogo*, 2002, vol. 13, pp. 64-70.
- 2. Pontryagin L.S., Boltyanskiy V.G. *Matematicheskaya teoriya optimalnykh protsessov* [The Mathematical Theory of Optimal Processes]. Moscow, Nauka Publ., 1983. 393 p.

METHOD OF THE OPTIMAL CONTROL IN THE SOLUTION OF A VARIATIONAL PROBLEM

Alexander Sergeevich Ignatenko

Senior Lecturer, Department of Function Theory, Kuban State University alexandr.ignatenko@gmail.com Stavropolskaya St., 149, 350040 Krasnodar, Russian Federation

Boris Efimovich Levitskii

Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Function Theory, Kuban State University bel@kubsu.ru
Stavropolskaya St., 149, 350040 Krasnodar, Russian Federation

Abstract. The paper provides a complete solution for the variational problem of finding a revolution surface of minimum area in the metric $|x|^{-n+1}$, corresponding extreme metric for p-module of family of surfaces that separate boundary components of a spherical ring.

The surface area in the n-dimensional Euclidean space R^n , defined by the rotation of the curve γ around the polar axis, calculated in the metric $\frac{1}{|x|^{n-1}}$, $x \in R^n$, $n \geq 3$, expressed by the formula

$$S(\gamma) = (n-1)\omega_{n-1} \int_{t_0}^{t_1} \sin^{n-2} \varphi(t) \sqrt{(\varphi'(t))^2 + (\varphi'(t))^2} dt,$$

where ω_n is a volume of n-dimensional sphere of radius 1, γ is the curve of the family of planar piecewise-smooth curves, given by the parametric equation $z(t)=e^{\rho(t)+i\varphi(t)},\ t\in[t_0,t_1],$ is lying in the closed set $\overline{B_r}=\{z:r\leq|z|\leq r(1+\delta), \phi\in[\varphi_0,\varphi_1]\},\ (0<\varphi_0<\varphi_1\leq\pi)$ and is connecting the point $z(t_0)=r(1+\delta)e^{i\varphi_0}$ and the point $z(t_1)=r(1+\delta_1)e^{i\varphi_1},\ 0\leq\delta_1\leq\delta$.

The problem is to find the infimum of the functional $S(\gamma)$ in the described class of curves with natural condition that we consider only curves for which in the points of differentiability $\varphi'(t) \geq 0$ and $\rho'(t) \leq 0$. The method of optimal controls by L. Pontryagin [2] is applied for search for optimal trajectories. The properties of the hyperelliptic integral of a special type, arising in the solution of the variational problem, were investigated.

Key words: minimal surfaces, surface of revolution, method of the optimal control, optimal trajectories, hyperelliptic integral.