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Abstract. We outline old and new results concerning the well-known prob-
lems in the Teichmüller space theory, i.e., whether these spaces are starlike in
the Bers holomorphic embedding and whether any Teichmüller space of dimen-
sion greater than 1 is biholomorhically equivalent to bounded convex domain in a
complex Banach space.
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1. Introductory remarks

It is well-known that the Teichmüller spaces with their canonical complex structure
are pseudo-convex. Moreover, all finite dimensional Teichmüller spaces are Runge domains,
hence polynomially convex.

The folowing two longstanding problems relate to geometric convexity of these spaces.
1. For an arbitrary finitely or infinitely generated Fuchsian group Γ, is the Bers embed-
ding of its Teichmüller space T(Γ) starlike?
2. Is any finite or infinite dimensional Teichmüller space of dimension greater than 1
biholomorphically equivalent to bounded convex domain in a complex Banach space 𝑋
(of the same dimension as T(Γ))?

The first problem was stated among other open problems on Teichmüller spaces and
Kleinian groups in the book [3] of 1974, collected by Abikoff.

The second problem was posed for the finite dimensional spaces by Royden and for the
universal Teichmüller space by Sullivan. It relates to Tukia’s result [17] which explicitly
yields a real analytic homeomorphism of the universal Teichmüller space T = T(1) onto a
convex domain in a real Banach space.

The aim of this paper is to outline old and recent results obtained in solving these
problems.

108

©
K
ru

sh
ka

l
S
.L

.,
20

16

ISSN 2222-8896. Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ. 2016. № 6 (37)



МАТЕМАТИКА

2. Teichmüller spaces are not starlike

1. First recall that the Bers embedding represents the space T(Γ) as a bounded domain
formed by the Schwarzian derivatives

𝑆𝑤 =
(︁𝑤′′

𝑤′

)︁′
− 1

2

(︁𝑤′′

𝑤′

)︁2
of holomorphic univalent functions 𝑤(𝑧) in the lower half-plane 𝑈* = {𝑧 : ℑ𝑧 < 0} (or
in the disk) admitting quasiconformal extensions to the Riemann sphere ̂︀C = C ∪ {∞}
compatible with the group Γ acting on 𝑈*.

It was shown in [10] that the universal Teichmüller space T = T(1) has points which
cannot be joined to a distinguished point even by curves of a considerably general form,
in particular, by polygonal lines with the same finite number of rectilinear segments. The
proof relies on the existence of conformally rigid domains established by Thurston in [15]
(see also [2]).

This implies, in particular, that the universal Teichmüller space is not starlike with
respect to any of its points, and there exist points ϕ ∈ T for which the line interval
{𝑡ϕ : 0 < 𝑡 < 1} contains the points from B ∖ S, where B = B(𝑈*) is the Banach space of
hyperbolically bounded holomorphic functions in the half-plane 𝑈* with norm

‖ϕ‖B = 4 sup
𝑈*

𝑦2|ϕ(𝑧)| (1)

and S denotes the set of all Schwarzian derivatives of univalent functions on 𝑈*. All ϕ
with finite norm (1) determine holomorphic functions on 𝑈* (as solutions of the Schwarz
differential equation 𝑆𝑤 = ϕ) which are only locally univalent.

Toki [16] extended the result on the nonstarlikeness of the space T to Teichmüller
spaces of Riemann surfaces that contain hyperbolic disks of arbitrary large radius, in par-
ticular, for the spaces corresponding to Fuchsian groups of second kind. The crucial point
in the proof of [16] is the same as in [10].

On the other hand, it was established in [12] that also all finite dimensional Teichmüller
spaces T(Γ) of high enough dimensions are not starlike. It seems likely that this property
must hold for all Teichmüller spaces of dimension at least two.

The non-starlikeness causes obstructions to some problems in the Teichmüller space
theory and its applications to geometric complex analysis.
2. There is also a simpler proof that the universal Teichmüller space is not starlike. This
proof, given recently in [8], provides explicitly the functions which violate this property. Its
underlying geometric features are completely different and involve the Abikoff — Bers —
Zhuravlev theorem which yields that the domain T has a common boundary with its com-
plementary domain in the space B (see [1], [4], [18]).

It is technically more convenient to deal here with univalent functions in the upper
half-plane 𝑈 = {𝑧 = 𝑥 + 𝑖𝑦 : 𝑦 > 0} denoting by B the corresponding space B(𝑈) of
hyperbolically bounded holomorphic functions in 𝑈 .

Let 𝑃𝑛 be a convex rectilinear polygon with the finite vertices 𝐴1, 𝐴2, ... , 𝐴𝑛, and let

the interior angle at the vertex 𝐴𝑗 be equal to πα𝑗; then 0 < α𝑗 < 1 and
𝑛∑︀

𝑗=1
α𝑗 = 𝑛− 2.

The conformal map of 𝑈 onto 𝑃𝑛 is represented by the Schwarz — Christoffel integral

𝑓*(𝑧) = 𝑑1

𝑧w

0

(ξ− 𝑎1)
α1−1(ξ− 𝑎2)

α2−1...(ξ− 𝑎𝑛)
α𝑛−1𝑑ξ+ 𝑑0, (2)
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where 𝑎𝑗 = 𝑓−1
* (𝐴𝑗) ∈ R, 𝑎1 < 𝑎2 < · · · < 𝑎𝑛, and 𝑑0, 𝑑1 are the complex constants. Its

logarithmic derivative 𝑏𝑓 = 𝑓 ′′/𝑓 ′ is of the form

𝑏𝑓*(𝑧) =
𝑛∑︁
1

(α𝑗 − 1)/(𝑧 − 𝑎𝑗),

and its Schwarzian

𝑆𝑓*(𝑧) =
𝑛∑︁
1

𝐶𝑗

(𝑧 − 𝑎𝑗)2
−

𝑛∑︁
𝑗,𝑙=1

𝐶𝑗𝑙

(𝑧 − 𝑎𝑗)(𝑧 − 𝑎𝑙)
,

where

𝐶𝑗 = α𝑗 − 1− 1

2
(α𝑗 − 1)2 < 0, 𝐶𝑗𝑙 = (α𝑗 − 1)(α𝑙 − 1) > 0.

We normalize 𝑓* letting 𝑎1 = 0, 𝑎2 = 1 and fixing 𝑎𝑛 <∞; then 𝑓*(∞) is an inner point of
the edge 𝐴𝑛𝐴1.

Since the boundary 𝜕𝑃𝑛 is a quasicircle, the function (2) admits a quasiconformal
extension onto the lower half-plane 𝑈*, hence 𝑆𝑓* ∈ T.

Denote by 𝑟0 the positive root of the equation

1

2

[︁ 𝑛∑︁
1

(α𝑗 − 1)2 +
𝑛∑︁

𝑗,𝑙=1

(α𝑗 − 1)(α𝑙 − 1)
]︁
𝑟2 −

𝑛∑︁
1

(α𝑗 − 1) 𝑟 − 2 = 0, (3)

and let

𝑆𝑓*,𝑡 = 𝑡𝑏𝑓* −
𝑡2

2
𝑏2𝑓* , 𝑡 > 0.

Theorem 1. For any convex polygon 𝑃𝑛, the Schwarzians 𝑟𝑆𝑓*,𝑟0 and 𝑆𝑓*,𝑟 with 0 < 𝑟 < 𝑟0
define the univalent on 𝑈 functions, and the corresponding harmonic Beltrami coefficients
ν𝑟(𝑧) = −(𝑟/2)𝑦2𝑆𝑓*,𝑟0(𝑧) and ν𝑟(𝑧) = −(1/2)𝑦2𝑆𝑓*,𝑟(𝑧) of their quasiconformal exten-
sions to the lower half-plane 𝑈* are extremal (have minimal 𝐿∞-norm). Hence, for some
𝑟 between 𝑟0 and 1, the Schwarzians 𝑟𝑆𝑓*,𝑟0 and 𝑆𝑓*,𝑟 are the outer points of T.

Note that for 𝑟 < 𝑟0 the solutions 𝑤𝑟 of each equation

𝑤′′/𝑤′)′ − (𝑤′′/𝑤′)2/2 = ϕ𝑟(𝑧), 𝑧 ∈ 𝑈, (4)

with ϕ𝑟 = 𝑟𝑆𝑓*,𝑟0 and ϕ𝑟 = 𝑆𝑓*,𝑟 map 𝑈 conformally onto the quasidisks (either bounded
or not), which can be regarded as the analytic polygons with vertices 𝑤𝑟(𝑎1), ... , 𝑤𝑟(𝑎𝑛),
whose boundary consists either of 𝑛 real analytic arcs with nonzero intersection angles or
else of arcs of spirals, which are analytic in their interior points.

This theorem yields, in particular, that any such 𝑤𝑟 does not admit extremal quasicon-
formal extensions of Teichmüller type.

The coefficients ν𝑟 define the Ahlfors — Weill quasiconformal extension of 𝑤𝑟 to the
lower half-plane 𝑈*, and

‖ν𝑟‖∞ =
1

2
‖ϕ𝑟‖B < 1

(provided that ‖ϕ𝑟‖B < 2).
The proof of Theorem 1 reveals an interesting connection between harmonic Beltrami

coefficients and the Grunsky coefficient inequalities (first established in [11]).
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3. Note that non-starlikeness of the universal Teichmüller space is in fact the main step in
the proof of most of the results mentioned in the beginning of this paper. By appropriate ap-
proximation, this property was extended to the spaces T(Γ) of sufficiently large dimensions.
So Theorem 1 has the same corollaries. For example, the arguments in its proof provide
simultaneously non-starlikeness of the space T in Becker’s holomorphic embedding which
represents this space as a bounded domain in the Banach space of holomorphic functions ψ in
the disk Δ* = {|𝑧| > 1} with norm ‖ψ‖ = supΔ*(|𝑧|2−1)𝑧ψ(𝑧)|. The points of this domain
are the logarithmic derivatives ψ𝑓 = 𝑓 ′′/𝑓 ′ of univalent functions 𝑓(𝑧) = 𝑧+𝑏0+𝑏1𝑧

−1+ . . .
in Δ*.
4. As an example, consider the rectangles 𝑃4. For any rectangle, all α𝑗 = 1/2, hence the
equation (4) assumes the form

5

4
𝑟2 + 2𝑟 − 2 = 0.

Its positive root 𝑟0 = 0.6966....

3. The second problem

1. For a long time, the result of Tukia mentioned in the introduction remained the only
known fact connecting Teichmüller spaces with geometric convexity. Recently it was es-
tablished in [7] that the universal Teichmüller space T cannot be mapped biholomorphically
onto a bounded convex domain in a uniformly convex Banach space, in particular, onto a
convex domain in the Hilbert space. This yields a restricted negative answer to Sullivan’s
question.

The uniform convexity of a Banach space 𝑋 means strong convexity of its unit ball;
namely, for any 𝑥𝑛, 𝑦𝑛 satisfying ‖𝑥𝑛‖ ≤ 1, ‖𝑦𝑛‖ ≤ 1, ‖𝑥𝑛+𝑦𝑛‖ → 2 must be ‖𝑥𝑛−𝑦𝑛‖ →
→ 0. The uniformly convex spaces are reflexive and have another important property: any
bounded subset 𝐸 ⊂ 𝑋 is weakly compact. Moreover, if a sequence {𝑥𝑛} ⊂ 𝑋 is weakly
convergent to 𝑥0 and ‖𝑥𝑛‖ → ‖𝑥0‖ , then 𝑥𝑛 → 𝑥0 in strong topology of the space 𝑋
induced by its norm. All this is valid, for example, for any Hilbert space and for 𝐿𝑝 spaces
with 𝑝 > 1.
2. As for the finite dimensional case, we can show that the answer is negative for the
spaces T(0, 𝑛) of the punctured spheres (the surfaces of genus zero). Let

Ca = ̂︀C ∖ {𝑎1, . . . , 𝑎𝑛}, ̂︀C = C ∪ {∞},

where a = (𝑎1, . . . , 𝑎𝑛) is an ordered collection of 𝑛 > 4 deleted distinct points. Note that
dimT(0, 𝑛) = 𝑛 − 3 and that the one-dimensional space T(0, 4) is conformally equivalent
to the disk.
Theorem 2. There is an integer 𝑛0 > 4 such that any space T(0, 𝑛) with 𝑛 ≥ 𝑛0 cannot
be mapped biholomorphically onto a bounded convex domain in C𝑛−3.

The proof of this theorem also involves conformally rigid domains (as for all results
mentioned above) and an important interpolation theorem for bounded univalent functions
in the plane domains. This approach also has other interesting applications that are not
presented here.
3. First we recall some needed facts from the Teichmüller space theory. Consider the
ordered 𝑛-tuples of points

a = (1, 𝑖,−1, 𝑎1, . . . , 𝑎𝑛−3), 𝑛 > 4, (5)

ISSN 2222-8896. Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ. 2016. № 6 (37) 111



МАТЕМАТИКА

with distinct 𝑎𝑗 ∈ ̂︀C ∖ {1, 𝑖,−1} and the corresponding punctured spheres

𝑋a = ̂︀C ∖ {1, 𝑖,−1, 𝑎1, . . . , 𝑎𝑛−3}, ̂︀C = C ∪ {∞},

regarded as the Riemann surfaces of genus zero. Fix a collection

a0 = (1, 𝑖,−1, 𝑎01, . . . , 𝑎0𝑛−3)

defining the base point 𝑋a0 of Teichmüller space T(0, 𝑛) = T(𝑋a0). Its points are the
equivalence classes [µ] of Beltrami coefficients from the ball

Belt(C)1 = {µ ∈ 𝐿∞(C) : ‖µ‖∞ < 1},

under the relation that µ1 ∼ µ2 if the corresponding quasiconformal homeomorphisms
𝑤µ1 , 𝑤µ2 : 𝑋a0 → 𝑋a (the solutions of the Beltrami equation 𝜕𝑤 = µ𝜕𝑤 with µ = µ1,µ2)
are homotopic on 𝑋a0 (and hence coincide in the points 1, 𝑖,−1, 𝑎01, . . . , 𝑎0𝑛−3). This models
T(0, 𝑛) as the quotient space T(0, 𝑛) = Belt(C)1/ ∼ with complex Banach structure of di-
mension 𝑛−3 inherited from the ball Belt(C)1. Note that T(0, 𝑛) is a complete metric space
with intrinsic Teichmüller metric defined by quasiconformal maps. By Royden’s theorem,
this metric equals the Kobayashi metric determined by the complex structure.

Another canonical model of T(0, 𝑛) = T(𝑋a0) is obtained using the uniformization
of Riemann surfaces and the holomorphic Bers embedding of Teichmüller spaces. We now
consider the disks

Δ = {𝑧 : |𝑧| < 1}, Δ* = {𝑧 ∈ ̂︀C : |𝑧| > 1}

and the ball of Beltrami coefficients (conformal structures on D)

Belt(Δ)1 = {µ ∈ 𝐿∞(C) : µ|Δ* = 0, ‖µ‖∞ < 1}.

and model the universal Teichmüller space T = T(D) as the space of quasi-symmetric home-
omorphisms of the unit circle 𝑆1 = 𝜕Δ factorized by Möbius maps. The canonical complex
Banach structure on T is defined by factorization of this ball, letting µ,ν ∈ Belt(Δ)1 be
equivalent if the corresponding quasiconformal maps 𝑤µ, /𝑤ν of ̂︀C coincide on the cir-
cle 𝑆1 and passing to their Schwarzian derivatives 𝑆𝑤µ(𝑧) in 𝐷* now running over a
bounded domain in the space B = B(Δ*) of holomorphic functions ϕ in Δ* with norm
‖ϕ‖ = supD*(|𝑧|2 − 1)2|ϕ(𝑧)|. This domain is contained in the ball {‖ϕ‖B < 1/6}.

The map φ : µ → 𝑆𝑤µ is holomorphic and descends to a biholomorphic map of
the space T onto this domain, which we will identify with T. It contains as complex
submanifolds the Teichmüller spaces of all hyperbolic Riemann surfaces and of Fuchsian
groups.

As is well-known, the space T coincides with the union of inner points of the set

S = {ϕ = 𝑆𝑤 ∈ B : 𝑤 univalent in Δ*};

on the other hand, by Thurston’s theorem, S ∖ T has uncountable many isolated points
ϕ0 = 𝑆𝑤0 which correspond to conformally rigid domains 𝑤0(Δ

*).

4. Using the holomorphic universal covering map ℎ : Δ → 𝑋a0 , one represents the
surface 𝑋a0 as the quotient space Δ/Γ0 (up to conformal equivalence), where Γ0 is a torsion
free Fuchsian group of the first kind acting discontinuously on Δ ∪ Δ*. The functions

112 S.L. Krushkal. Complex rigidity of Teichmüller spaces
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µ ∈ 𝐿∞(𝑋a0) are lifted to 𝑈 as the Beltrami (−1, 1)-measurable forms ̃︀µ𝑑𝑧/𝑑𝑧 in Δ with
respect to Γ0 which satisfy (̃︀µ∘γ)γ′/γ′ = ̃︀µ, γ ∈ Γ0 and form the Banach space 𝐿∞(Δ,Γ0).

We extend these ̃︀µ by zero to 𝑈* and consider the unit ball Belt(Δ,Γ0)1 of 𝐿∞(Δ,Γ0).
Then the corresponding Schwarzians 𝑆𝑤̃︀µ|Δ* belong to the universal Teichmüller space T
and the subspace of such Schwarzians is regarded as the Teichmüller space T(Γ0) of the
group Γ0. It is canonically isomorphic to the space T(𝑋a0). Moreover,

T(Γ0) = T ∩B(Γ0), (6)

where B(Γ0) is an (𝑛 − 3)-dimensional subspace of B which consists of elements ϕ ∈ B
satisfying (ϕ ∘ γ)(γ′)2 = ϕ for all γ ∈ Γ0; see, e.g., [13]. This leads to the representation
of the space T(𝑋a0) as a bounded domain in the complex Euclidean space C𝑛−3.

Note also that the space B is dual to the subspace 𝐴1(Δ
*) in 𝐿1(Δ

*) formed by inte-
grable holomorphic functions in Δ*, while 𝐵(Δ*,Γ0) has the same elements as the space
𝐴1(Δ

*,Γ0) of integrable holomorphic forms of degree −4 with norm ‖ϕ‖ =
s

Δ*/Γ0

|ϕ(𝑧)|𝑑𝑥𝑑𝑦.

5. The collections (5) fill a domain 𝒰𝑛 in C𝑛−3 obtained by deleting from this space the
hyperplanes {𝑧 = (𝑧1, . . . , 𝑧𝑛−3) : 𝑧𝑗 = 𝑧𝑙, 𝑗 ̸= 𝑙}, and with 𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = −1. This
domain represents the Torelli space of the spheres 𝑋a and is covered by T(0, 𝑛). Namely,
we have (see, e.g., [14, Section 2.8])
Lemma 1. The holomorphic universal covering space of 𝒰𝑛 is the Teichmüller space
T(0, 𝑛). This means that for each punctured sphere 𝑋a, there is a holomorphic universal
covering

πa : T(0, 𝑛) = T(𝑋a)→ 𝒰𝑛.

The covering map π𝑎 is well defined by

πa ∘ φa(µ) = (1, 𝑖,−1, 𝑤µ(𝑎1), . . . , 𝑤µ(𝑎𝑛−3)),

where φa denotes the canonical projection of the ball Belt(Δ)1 onto the space T(𝑋a).
Truncated collections a* = (𝑎1, . . . , 𝑎𝑛−3) provide the local complex coordinates on the

space T(0, 𝑛) and define its complex structure.
Let us consider the ball Belt(Δ)1 and call its elements µ defining the same point of the

universal Teichmüller space T-equivalent. The corresponding homeomorphisms 𝑤µ coincide
on the unit circle.

We now assume that the coordinates 𝑎0𝑗 of the surface 𝑋a0 are placed on the circle 𝑆1

and define on this ball another equivalence relation, letting µ, ν ∈ Belt(Δ)1 be equivalent if
𝑤µ(𝑎0𝑗) = 𝑤ν(𝑎0𝑗) for all 𝑗 and the homeomorphisms 𝑤µ, 𝑤ν are homotopic on the punctured
sphere 𝑋a0 . Let us call such µ and ν strongly 𝑛-equivalent. This equivalence is weaker
than T-equivalence, i.e., if two coefficients µ,ν ∈ Belt(Δ)1 are T-equivalent, then they
are also strongly 𝑛-equivalent, which implies, (by descending to the equivalence classes) a
holomorphic map 𝜒 of the underlying space T into T(0, 𝑛) = T(𝑋a0).

This map is a split immersion, i.e., it has local holomorphic sections. In fact, we have
much more:
Lemma 2. The map 𝜒 is surjective and has a global holomorphic section 𝑠 : T(𝑋a0)→ T.

Proof. The surjectivity of 𝜒 is a consequence of the following interpolation result from [5].

ISSN 2222-8896. Вестн. Волгогр. гос. ун-та. Сер. 1, Мат. Физ. 2016. № 6 (37) 113



МАТЕМАТИКА

Lemma 3. Given two cyclically ordered collections of points (𝑧1, . . . , 𝑧𝑚) and (ζ1, . . . , ζ𝑚)
on the unit circle 𝑆1 = {|𝑧| = 1}, there exists a holomorphic univalent function 𝑓 in
the closure of the unit disk Δ = {|𝑧| < 1} such that |𝑓(𝑧)| < 1 for 𝑧 ∈ Δ distinct
from 𝑧1, . . . , 𝑧𝑚, and 𝑓(𝑧𝑘) = ζ𝑘 for all 𝑘 = 1, . . . ,𝑚. Moreover, there exist univalent
polynomials 𝑓 with such an interpolation property.

Since the interpolating function 𝑓 given by this lemma is regular up to the boundary,
it can be extended quasiconformally across the boundary circle 𝑆1 to the whole spherê︀C. Hence, given a cyclically ordered collection (𝑧1, . . . , 𝑧𝑚) of points on 𝑆1, then for any
ordered collection (ζ1, . . . , ζ𝑚) in ̂︀C, there is a quasi-conformal homeomorphism ̂︀𝑓 of the
whole sphere ̂︀C carrying the points 𝑧𝑗 to ζ𝑗, 𝑗 = 1, . . . ,𝑚, and such that its restriction to
the closed disk Δ is biholomorphic on Δ (and similarly for the ordered collections of points
on arbitrary quasicircles).

Applying Lemma 1, one constructs quasiconformal extensions of 𝑓 lying in prescribed
homotopy classes of homeomorphisms 𝑋z → 𝑋w.

To prove the assertion of Lemma 2 on holomorphic sections for 𝜒, take a dense subset

𝑒 = {𝑥1, 𝑥2, . . . } ⊂ 𝑋a0 ∩ 𝑆1

accumulating to all points of 𝑆1 and consider the surfaces

𝑋𝑚
a0 = 𝑋a0 ∖ {𝑥1, . . . , 𝑥𝑚}, 𝑚 ≥ 1

(having type (0, 𝑛 +𝑚)). The equivalence relations on Belt(C)1 for 𝑋𝑚
a0 and 𝑋a0 generate

a holomorphic map 𝜒𝑚 : T(𝑋𝑚
a0)→ T(𝑋a0).

The inclusion map 𝑗𝑚 : 𝑋𝑚
a0 →˓ 𝑋a0 forgetting the additional punctures generates a

holomorphic embedding 𝑠𝑚 : T(𝑋a0) →˓ T(𝑋𝑚
a0) inverting 𝜒𝑚. To present this section

analytically, we uniformize the surface 𝑋𝑚
a0 by a torsion free Fuchsian group Γ𝑚

0 on Δ∪Δ*

so that 𝑋𝑚
a0 = Δ/Γ𝑚

0 . By (6), its Teichmüller space T(Γ𝑚
0 ) = T ∩B(Γ𝑚

0 ).
The holomorphic universal covering maps ℎ : Δ* → Δ*/Γ0 and ℎ𝑚 : Δ* → Δ*/Γ𝑚

0

are related by 𝑗∘ℎ𝑚 = ℎ∘̂︀𝑗, where ̂︀𝑗 is the lift of 𝑗. This induces a surjective homomorphism
of the covering groups θ𝑚 : Γ𝑚

0 → Γ0 by

̂︀𝑗 ∘ γ = θ𝑚(γ) ∘ γ, γ ∈ Γ𝑚
0 , (7)

and the norm preserving isomorphism ̂︀𝑗𝑚,* : B(Γ0)→ B(Γ𝑚
0 ) by

̂︀𝑗𝑚,*ϕ = (ϕ ∘ ̂︀𝑗)(̂︀𝑗′)2, (8)

which projects to the surfaces 𝑋a0 and 𝑋𝑚
a0 as the inclusion of the space 𝑄(𝑋a0) of quadratic

differentials corresponding to B(Γ0) into the space 𝑄(𝑋𝑚
a0) (cf. [6]). The equality (8)

represents the section 𝑠𝑚 indicated above.

6. To investigate the limit function for 𝑚→∞, we embed T into the space B and compose
each 𝑠𝑚 with a biholomorphism

η𝑚 : T(𝑋𝑚
a0)→ T(Γ𝑚

0 ) = T ∩B(Γ𝑚
0 ) (𝑚 = 1, 2, . . . ).

Then the elements of T(Γ𝑚
0 ) are represented in the form

̂︀𝑠𝑚(𝑧, ·) = 𝑆𝑓𝑚(𝑧;𝑋a),
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being parameterized by the points of T(𝑋a0).
Each Γ𝑚

0 is the covering group of the universal cover ℎ𝑚 : Δ* → 𝑋a𝑚
0
, which can

be normalized (conjugating appropriately Γ𝑚
0 ) by ℎ𝑚(∞) = ∞, ℎ′

𝑚(∞) > 0. Take its
fundamental polygon 𝑃𝑚 obtained as the union of the regular circular 𝑚-gon in Δ* centered
at the infinite point with the zero angles at the vertices and its reflection with respect to one
of the boundary arcs. These polygons increasingly exhaust the disk Δ* from inside; hence,
by the Carathéodory kernel theorem, the maps ℎ𝑚 converge to the identity map locally
uniformly in Δ*.

Since the set of punctures 𝑒 is dense, it completely determines the equivalence classes
[𝑤µ] and 𝑆𝑤µ of T, and the limit function 𝑠(𝑧, ·) = lim𝑚→∞ ̂︀𝑠𝑚(𝑧, ·) maps T(𝑋a0) into T.
For any fixed 𝑋a, this function is holomorphic on Δ*; hence, by the well-known property
of elements in the functional spaces with sup-norms, 𝑠(𝑧, ·) is holomorphic also in the norm
of B. This 𝑠 determines a holomorphic section of the original map 𝜒, which completes the
proof of Lemma 3.

7. The following lemma is a special case of the general approximation lemma in [12]; it
reveals some special features which are used also in the proof of Theorem 2.
Lemma 4. For any Schwarzian ϕ ∈ T holomorphic in the disk Δ*

𝑟 = {|𝑧| > 𝑟}, 𝑟 < 1,
there exist a sequence of torsion free Fuchsian groups Γ𝑟

𝑚 of the first kind acting on
Δ*

𝑟, which does not depend on ϕ, and a sequence of elements ϕ𝑚 ∈ T(Γ𝑟
𝑚) canonically

determined by ϕ and converging to ϕ uniformly on Δ*; hence, lim
𝑚→∞

‖ϕ𝑚 − ϕ‖B = 0.

Proof. We pass to maps 𝑤µ preserving the points 0, 1,∞ (which does not affect their
Schwarzians 𝑆𝑤µ forming the space T) and pick on the unit circle 𝑆1 a dense subset of
dyadic points

𝑎
(𝑛)
𝑙 = 𝑒π𝑙𝑖/2

𝑚

; 𝑙 = 0, 1, . . . , 2𝑚+1 − 1; 𝑚 = 2, 3, . . . .

Regarding the collections

a0(𝑟,𝑚) = {0, 𝑟, 𝑟𝑒π𝑙𝑖/2
𝑚−3

,∞; 𝑙 = 0, 1, . . . ,𝑚− 1}

as the punctures of the base points 𝑋a0(𝑟,𝑛) of the spaces T(0,𝑚) = T(𝑋a0(𝑟,𝑚)), consider
for each 𝑚 the covering group Γ𝑟

𝑚 of the universal cover ℎ𝑚 : Δ*
𝑟 → 𝑋

a
(𝑟,𝑚)
0

with ℎ𝑚(∞) =

= ∞, ℎ′
𝑚(∞) > 0 and take its canonical fundamental polygon 𝑃𝑚 in Δ*

𝑟 centered at the
infinite point with the zero angles at the vertices. These polygons increasingly exhaust the
disk Δ*

𝑟 from inside, hence the maps ℎ𝑚 converge to the identity map locally uniformly
in Δ*

𝑟.
The classical result of geometric function theory implies that for each non-zero ϕ ∈

∈ B(Δ*
𝑟) and large 𝑚 ≥ 𝑚0(ϕ), the corresponding Γ𝑟

𝑚-quadratic differentials

ϕ𝑚(𝑧) =
∑︁
γ∈Γ𝑟

𝑚

ϕ(γ𝑧)γ′(𝑧)2 (9)

also do not vanish and are the Schwarzians of univalent functions 𝑤𝑚 on Δ*
𝑟 compatible

with these groups. The sequences {Γ𝑟
𝑚} and {ϕ𝑛} satisfy the assertion of the lemma.

Now, to complete the proof of Theorem 2, assume, to the contrary, that there exists an
infinite sequence of spaces T(0, 𝑛) admitting biholomorphic homeomorphisms η𝑛 onto the
bounded convex domains 𝐷𝑛 ⊂ C𝑛−3, where 𝑛 runs over an infinite subsequence from N.
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We embed these domains 𝐷𝑛 biholomorphically as convex submanifolds 𝑉𝑛 into the unit
ball 𝐵(𝑙2) of the Hilbert space 𝑙2 of sequences so that each 𝑉𝑛 is placed in 𝑛−3-dimensional
subspace 𝑙2𝑛 of 𝑙2 formed by points c = (𝑐𝑗) with 𝑐𝑗 = 0 for all 𝑗 > 𝑛 and contains its origin,
𝑉𝑛 ⊂ 𝑉𝑛+1, and 𝑉𝑛 touches 𝑉𝑛+1 from inside in its boundary point c𝑛 ∈ 𝜕𝑉𝑛 whose distance
from the origin is maximal. Their union

𝑉∞ =
⋃︁
𝑛

𝑉𝑛 (10)

is a convex submanifold in the ball 𝐵(𝑙2) whose completion ̂︀𝑉∞ is a convex domain ̂︀𝑉∞ in a
subspace 𝑙20 of 𝑙2.

Now take a Schwarzian ϕ* = 𝑆𝑤* ∈ S ∖ T defining an isolated point of S (hence
a conformally rigid domain 𝑤*(Δ*) in ̂︀C) and consider the homotopy functions 𝑤*

𝑡 (𝑧) =
= 𝑡𝑤*(𝑧/𝑡). Each 𝑤*

𝑡 is conformal in the wider disk Δ1/|𝑡|. Pick a sequence of positive
numbers 𝑡𝑗 approaching 1 and apply Lemma 6 to approximate each Schwarzian

ψ𝑗(𝑧) := 𝑆𝑤*
𝑡𝑗
(𝑧) = 𝑡−2

𝑗 𝑆𝑤*(𝑧/𝑡𝑗)

by differentials ϕ𝑚𝑗
∈ T(Γ

𝑡𝑗
𝑚) satisfying

‖ϕ𝑚𝑗
− ψ𝑗||B <

1

2𝑗
dist(ψ𝑗, 𝜕T).

These ϕ𝑚𝑗
are determined by ψ𝑗 (hence by original ϕ*) via (9) and are convergent to ϕ*

locally uniformly in Δ*.
Moreover, the proof of Lemma 6 shows that one can choose in the series (9) a suf-

ficiently large number 𝑚𝑗 = 𝑛 so that T(Γ
𝑡𝑗
𝑚) = T(Γ𝑛) is one of the spaces listed above

equivalent to convex domains 𝑉𝑛.
We have for each 𝑛 commutative diagram

T(Γ𝑛+1)
𝜒𝑛,𝑛+1−−−−→ T(Γ𝑛)

η𝑛+1

⎮⎮⌄ ⎮⎮⌄η𝑛
𝑉𝑛+1

̃︀𝜒𝑛,𝑛+1−−−−→ 𝑉𝑛

where 𝜒𝑛,𝑛+1 is again a holomorphic map generated by forgetting the additional puncture
on the base point of T(0, 𝑛) and ̃︀𝜒𝑛,𝑛+1 = η−1

𝑛 ∘ 𝜒𝑛,𝑛+1 ∘ η𝑛+1. We can replace in (10) each
domain 𝑉𝑛 by its image ̃︀𝜒−1

𝑛,𝑛+1(𝑉𝑛) in 𝑉𝑛+1.
Denote by 𝜒𝑛 the holomorphic map T→ T𝑛 given by Lemma 3. Its composition with

η𝑛 tends as 𝑛→∞ to a holomorphic map

η∞ = lim
𝑛→∞

η𝑛 ∘ 𝜒𝑛 : T→ 𝑉∞.

Its holomorphy is ensured by the infinite dimensional analog of Montel’s theorem following
from the Alaoglu — Bourbaki theorem.

It follows from Lemma 3 that η∞ has a holomorphic section σ∞ : 𝑉∞ → T mapping
𝑉∞ biholomorphically onto a domain

T∞ =
⋃︁
𝑛

𝜒−1
𝑛,𝑛+1T(Γ𝑛) ⊂ T ∩B0,
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where B0 is some subspace of B (cf. (6)). Its inverse η−1
∞ also is holomorphic.

Noting that the sequence of images x𝑛 = η∞(ϕ𝑛) ∈ 𝑉∞ is weakly compact in the
space 𝑙2 and passing if needed to a convergent subsequence to some point x0 ∈ 𝑙2, one gets

‖x0‖𝑙2 ≤ lim
𝑛→∞

‖x𝑛‖𝑙2 . (11)

Our goal is to show that only the equality is possible here, i.e., ‖x0‖𝑙2 = lim
𝑛→∞

‖x𝑛‖𝑙2 . To this

end, we consider the space 𝑙20 as a real space with the same norm (admitting multiplication
of x ∈ 𝑙20 only with 𝑐 ∈ R). Denote this real space by ̃︀𝑙20. The domain 𝑉∞ is convex in ̃︀𝑙20;
thus its Minkowski functional

α(x) = inf{𝑡 > 0 : 𝑡−1x ∈ 𝑉∞} (x ∈ ̃︀𝑙20)
determines on this space a norm equivalent to initial norm ‖x‖𝑙2 . Denote the space with the
new norm by ̃︀𝑙2α and notice that the domain 𝑉∞ is its unit ball.

The sequence 𝑥𝑛 is weakly convergent also on ̃︀𝑙2α; thus, similar to (11),

α(x0) ≤ lim
𝑛→∞

α(x𝑛) ≤ 1.

This implies that the point x0 belongs to the closure of the domain 𝑉∞ in 𝑙2-norm.
If α(x0) < lim

𝑛→∞
α(x𝑛) or α(x0) = lim

𝑛→∞
α(x𝑛) < 1, in both these cases the point x0

must lie inside 𝑉∞. Then its inverse image η−1(x0) ∈ T and thus is the Schwarzian 𝑆𝑤0 of
some univalent function 𝑤0 on Δ*. Since η−1(x𝑛) = ϕ𝑛 are convergent locally uniformly on
Δ* to 𝑆𝑤* , it must be 𝑤0 = 𝑤* which yields that 𝑆𝑤* must lie in T∞ ⊂ T, in contradiction
to that it is an isolated point of the set S.

It remains the case α(x0) = lim
𝑛→∞

α(x𝑛) = 1 which is equivalent to

lim
𝑛→∞

‖x𝑛‖𝑙2 = ‖x0‖𝑙2 and x0 ∈ 𝜕𝑉∞. (12)

The weak convergence x𝑛 → x0 in 𝑙2 and the equality (12) together imply the strong
convergence lim

𝑛→∞
‖x𝑛 − x0‖𝑙2 = 0.

Then, since η∞ is a biholomorphic homeomorphism, the inverse images η−1
∞ (x𝑛) = ϕ𝑛

must approach the boundary of T in B and therefore 𝑆𝑤* must be a boundary point of T,
again contradicting that it is an isolated point of S. This completes the proof of the theorem.
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КОМПЛЕКСНАЯ ЖЕСТКОСТЬ ПРОСТРАНСТВ ТЕЙХМЮЛЛЕРА
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Аннотация. В работе представлены старые и новые результаты относи-
тельно хорошо известных задач в теории пространств Тейхмюллера. А имен-
но: являются ли эти пространства звездообразными в голоморфном вложении
Берса, и существуют ли пространства Тейхмюллера размерности больше 1
биголоморфно эквивалентные ограниченной выпуклой области в комплексном
банаховом пространстве.

Ключевые слова: пространства Тейхмюллера, голоморфное вложение,
производная Шварца, выпуклая область, звездообразность, голоморфное се-
чение, конформно жесткая область, равномерно выпуклое банахово простран-
ство.
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