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Abstract. We give a survey of recent results on positive solutions to sublin-
ear elliptic equations of the type —Lu+ V u? = f, where L is an elliptic operator
in divergence form, 0 < ¢ < 1, f > 0 and V is a function that may change
sign, in a domain 2 C R", or in a weighted Riemannian manifold, with a positive
Green’s function G. We discuss the existence, as well as global lower and upper
pointwise estimates of classical and weak solutions u, and conditions that ensure
u € L"(Q) or u € WHP(Q).

Some of these results are applicable to homogeneous sublinear integral equa-
tions u = G(uldo) in 2, where 0 < ¢ < 1, and 0 = —V is a positive locally finite
Borel measure in Q. Here G(fdo)(z) = [,G(z,y), f(y)do(y) is an integral
operator with positive (quasi) symmetric kernel G on €2 x €2 which satisfies the
weak maximum principle. This includes positive solutions, possibly singular, to
sublinear equations involving the fractional Laplacian,

(=A)2u=ocu!, u>0 inQ,

where 0 < ¢ < 1,0 < o <nand u=0in Q° and at infinity in domains 2 C R"”
with positive Green’s function G.

Key words: sublinear elliptic equations, Green’s function, weak maximum
principle, fractional Laplacian.

1. Introduction

POINTWISE ESTIMATES OF SOLUTIONS AND EXISTENCE

Let ) be a connected open set in R, or a weighted Riemannian manifold (M, m) (see
Sec. 2 below). We give a survey of recent results on positive solutions u to the sublinear
elliptic differential equation

—Lu+V(x)ul=f, x€Q,

(1.1)
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where 0 < ¢ < 1, and
Lu = div(AVu) (1.2)

is an elliptic operator with symmetric coefficients A = (a;;(x));,_, in divergence form, V
and f are functions in 2, and f > 0. Here V (x) may change sign, and no extra boundary
conditions are imposed on V.

One of the main goals is to obtain global pointwise estimates of w in terms of the
function h which is defined as the minimal positive solution in 2 of the equation —Lh = f,
where f #Z 0. We also consider positive solutions u to the corresponding homogeneous
equation

—Lu+V(z)u! =0, (1.3)

with f = 0. In Sec. 2, we present lower pointwise estimates of solutions to (1.1) and (1.3)
obtained in [16; 17].
There are also analogues of these estimates for positive (super) solutions u to sublinear
integral equations
u+ G(Vu?) = F, (1.4)

which involve the integral operator Gf(x) = [, G(z,y) f(y)dy with a general positive
kernel G: Q x Q — (0,+00]. If G = G is Green’s function associated with the elliptic
operator L and F' = G f, then (1.4) is in a sense equivalent to (1.1).

In many cases it is enough to assume that the kernel G is lower semicontinuous,
symmetric (or quasi-symmetric) and satisfies the weak maximum principle (see [16]), which
includes many non-local operators, for instance, the fractional Laplacian (—A)?2. This leads
to pointwise estimates of solutions for (1.4) in the case where V = —o > 0, and o is a
locally integrable function, or locally finite positive Borel measure in 2. In particular, we
obtain sharp pointwise estimates of solutions (possibly singular) and existence results for
the fractional Laplacian equation

(=A)cu=ocu!, u>0 inQ, wu=0 inQ° (1.5)

in general domains €2 C R™ with positive Green’s function GG for 0 < & < 2, or nice domains
(the entire space R", or balls, or half-spaces in R") for 0 < o« < n.

For entire solutions on 2 = R” and V = —o > 0, where o is a locally finite positive
Borel measure in R”, there are more complicated matching upper and lower bounds given in
terms of certain nonlinear potentials of Th. Wolff type [8-10]. Earlier pointwise estimates
for bounded positive solutions are due to Brezis and Kamin [6]. We consider such results in
Sec. 3.

In the case V = —o > 0, there are necessary and sufficient conditions for the existence
of positive solutions u € L(§2,0) and u € L{ (2, 0) to (1.4). The latter class includes all
positive solutions 0 < u < 400 do-a.e., and can be characterized either using certain
localization techniques developed in [8] in the case L = (—A)2 and Q = R", or integral
inequalities with weights as in [23] in the general case. These results are discussed in Sec. 3
and Sec. 4.

We also present in Sec. 5 criteria for the existence of positive solutions to (1.4) of
higher integrability u € LItY(£2, o) (y > 0), which are easier to characterize and are useful
in applications (see [27]). In particular, the case y = 1, i.e., solutions u € L'T(Q, o),
corresponds to finite energy solutions to sublinear elliptic equations (1.3) in the Dirichlet
space u € W12(Q) for uniformly elliptic operators L in divergence form.
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Similar criteria for v > 0 can be applied to deduce conditions on o which ensure the
existence of positive solutions u to (1.3) in Sobolev spaces W?(£2) and Lebesgue spaces
L"(Q,dz) for general domains 2 C R™ with positive Green’s functions (see [24;25]). Some
earlier existence results of this type for o € L*(Q2,dx) in bounded domains 2 are due to
Boccardo and Orsina [4;5]. Such existence theorems under more general assumptions on o
which include measures (possibly singular with respect to Lebesgue measure) are discussed
in Sec. 6.

2. Lower pointwise estimates of supersolutions

In this section, we assume that 2 C R" is a connected open set, and consider the
divergence form operator

Lu = div(AVu) ( Z 8% ai; (x 8wju) (2.1)

i,7=1

where a;; are C? functions in §2, and a;; = aj;. Assume that L is elliptic, that is, the matrix
A = (a;; (x)) is positive definite for any x (the uniform ellipticity is not required).

Let us assume that the Dirichlet Green function of L in ) exists. We denote it by
G (z,y). We set

h(z) = Gf(x) = / G () f (y) dy.

where f >0 (f # 0), and assume that h (z) < oo for all x € Q (note also that i (x) > 0 in
Q2), and that the integral

G(h1V)( /G’Qxth YV (y)dy (2.2)

is well-defined.
An interesting special case is when f = 1, and h is the solution of the Dirichlet
problem

(2.3)

—Lh=1 in €,
h =0 on 0f.

In other words, h(z) = E,[tq], where 1q = inf{t: X; ¢ Q} is the first exit time from
Q) of the (rescaled) Brownian motion X;, and z € Q is a starting point. For bounded C!
domains €2, it is well known that h(x) ~ dg(x), where

do(z) = dist(x, 0Q). (2.4)

One of the main results of [17] in the case 0 < ¢ < 1 is the following global lower
estimate for a (super) solution v > 0 to (1.1).

Theorem 2.1. Let Q C R" be a domain with a positive Green function G. Suppose
V,feC), and f >0, f£0in Q. Let u € C*(Q) satisfy the inequality

—Lu+Vul>f, u>0 in Q. (2.5)

—— 20 [.E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
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Set h = Gf and assume that h < oo in Q. Assume also that GX(hiV)(z) is well-defined
for all x € Q). Then the following estimate holds for all x € () :

G(hiV)(z)] e

u(z) =2 h(z) [1—(1- C])w (2.6)

_l’_

This theorem is actually proved in [17] in a more general context of elliptic operators
on weighted manifolds (M, m). We recall that if M is a smooth Riemannian manifold with
the Riemannian metric tensor g = (g;;), then the associated Laplace — Beltrami operator
L acts on C? functions v on M and is given in any chart z1, ..., x, by

Lou = \/W Z O, ( det ggij&rju> )

2,7=1

Here det g is the determinant of the matrix g = (g;;), and (¢") is the inverse matrix of
(gi;). The Riemannian measure my is given in the same chart by

dmg = /det gdx;...dx,,

so that £y is symmetric with respect to my. Using the gradient operator V defined by

and the divergence div on vector fields F*

divF—\/an (@}W‘),

we have
EO =divo V.

Now let w be a smooth positive function on M and consider the measure m on M
given by
dm = wdmy.

The couple (M, m) is called a weighted manifold, and w in this context is called a weight
(see [14]). The following operator £

Lu = —d1v (wVu) = Z Or, (w det ggijﬁmju) (2.7)

7,]1

w\/det

acting on C? functions u on M, is called the (weighted) Laplace operator of (M, m). This
operator £, which is symmetric with respect to measure m, can be used in place of the
operator L in  C R™ above.

There is also a similar lower estimate for positive (super) solutions to the homogeneous
equation (1.3).
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Theorem 2.2. Let 2 C R” be a domain with a positive Green function G*. Suppose
V e C(Q), and u € C*(Q) satisfies the inequality

—Lu+Vu?!>0, u>0in €, (2.8)

where 0 < q < 1. Assume also that GV (x) is well-defined for all = € (.
Then the following estimate holds for all x € (2 :

1

u(z) > [—(1—q) GV(a:)]F ) (2.9)

Similar global pointwise estimates are obtained in [17] for all exponents ¢ € R (¢ # 0),
but we do not consider the case ¢ ¢ (0,1) here. Also, the preceding estimate remains true
for nonnegative solutions u if the integration in the Green’s potentials G(h?V) and G*V
respectively is taken over the set Ot = {z € Q: u > 0} in place of 2. Note that the
differential inequalities (2.5) and (2.8) in Theorem 2.1 and Theorem 2.2 respectively are
understood in the classical sense.

In the case V= —o < 0, where o is a locally finite measure in 2, the preceding
estimate yields

?&ﬂz{ﬂ—@ﬁéGW%yﬂdwyz> (2.10)

which holds for all non-trivial weak solutions u (possibly singular).

This estimate was obtained for the Laplacian L = A in the case 2 = R™ in [6], without
specifying the sharp constant (1 — q)l%q, under some additional assumptions on o > 0 (see
also [9]).

There are analogues of this estimate for integral operators with general positive kernels
G: QxQ — (0,+00] on a locally compact Hausdorff space €2 that are lower semicontinuous,
symmetric, and satisfy the weak maximum principle with constant b > 1 (see [16]).

For a locally finite Radon measure v € M™((2), we denote by Gv the potential

ZAGWQW@

We recall that the kernel G is said to satisfy the weak maximum principle (with
constant b > 1) provided that

Gv(x) < M, Vxesuppv = Gv(z) <bM, Ve, (2.11)

for any constant M > 0 and v € MT(Q2). When b = 1, we say that G satisfies the strong
maximum principle.

These assumptions hold for many non-local operators L of interest in nonlinear analysis,
in particular, the fractional Laplacian operators (—A)?2 in domains  C R”. For such kernels

G and 0 € M*(Q), let

G(fdo)(x /Gmy do(y), z €,

where f > 0 is a measurable function.
If w > 0 do-a.e. is a supersolution, i.e.,

G(u'do)(z) <u(x) < oo do—a.e., (2.12)

e—— 22 [.LE. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
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then

1

u(z) > (1 — q)l%qbfl%q [Go(x)] 7 do—a.e. in Q. (2.13)

The constant (1 — q)ﬁ in (2.13) in the case b = 1 coincides with that in (2.10). Similar
results hold for quasi-symmetric kernels GG such that there exists a constant a > 0 for which

G(z,y) <aG(z,y), =,y€, (2.14)

with a constant on the right-hand side of (2.13) depending on both a and b. See [2] where
quasi-symmetry is established for many elliptic operators in non-divergence form. Properties
(2.11) and (2.14) will be used extensively in Sections 4 and 6 below.

3. Matching upper and lower pointwise estimates of solutions

In this section, we discuss recent results established in [8] for entire solutions to
quasilinear elliptic equations of the type

—Apu = oul in R™,

(3.1)
liminf u(x) =0, wu >0,
Tr—00
where 0 < ¢ < p — 1. Here A, = div(Vu|Vu[P~2) is the p-Laplace operator, and o > 0
is an arbitrary locally integrable function, or locally finite Borel measure, o € M™(R"); if
o € L} .(R") we write do = odx.

The main goal is to give necessary and sufficient conditions on o for the existence
of weak solutions to (3.1), and obtain matching upper and lower global pointwise bounds
for positive solutions. In this approach, key integral inequalities are identified, and new
nonlinear potentials of Wollf type are constructed that are intrinsic to a number of similar
problems.

This approach is applicable to general quasilinear A-Laplace operators of divergence
type div.A(x, Vu) under standard boundedness and structural assumptions on A, as well as
to fully nonlinear k-Hessian operators, and the fractional Laplacian equations (see [8]).

We will restrict ourselves here to the case p = 2 and linear operators div(AVu)
under the uniform ellipticity assumption on the matrix A € L*>°(R™)™ ™. In this setup, the
fundamental solution of the A-Laplacian is known to be pointwise equivalent to that of the
Laplacian, which reduces the problem to estimates involving Newtonian potentials.

In fact, we will consider below the fractional Laplacian equations,

(=A)2u=ocu! in R",

(3.2)
liminf u(x) =0, wu >0,
Tr—00
for 0 < ¢ <1 and 0 < a < n; this includes the range o« > 2 where the usual maximum
principle is not available.
In the classical case p = 2, equation (3.1), or equivalently (3.2) with a = 2, provides
a model sublinear elliptic problem if 0 < ¢ < 1. It is easy to see that it is equivalent to
the integral equation u = N(u?do), where Nw = (—A)~'w is the Newtonian potential of
dw = uldo on R™.
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As we emphasize in [8], such problems are governed by the important integral inequal-
ity

1

([ 1olrdo)" < ellaoluien, (33)

for all test functions @ € C?(R™) vanishing at infinity such that —A¢ > 0. This inequality
turns out to be necessary and sufficient for the existence of a positive solution u € LY(R", o)
to(3.1)ifp=2and 0 <q< 1.

Inequality (3.3) represents the end-point case of the well-studied (L, L9) trace inequal-
ities for p > 1. A comprehensive treatment of trace inequalities in that case in terms of
Sobolev capacities can be found in [22].

To characterize the existence of arbitrary weak solutions u € L{ (R", o), and obtain
sharp global pointwise estimates, a localization procedure is used in [8] which involves the
so-called intrinsic Wolff potentials.

More precisely, one needs to consider a localized version of (3.3) where the measure
o is replaced with op = xp 0 restricted to a ball B = B(x,r), and the corresponding best
constant s is denoted by s(B). These constants are used as building blocks in the key tool,

a potential of Th. Wolif type (see [1] for the theory and history of Wolff’s potentials),

Ko(z) = /0 = Bl r))| 7 %, z € R". (3.4)

7"”72

This nonlinear potential, together with the usual Newtonian potential No, provides sharp
bilateral estimates of solutions in the case p=2and 0 < ¢ < 1.

This work has been motivated by the results of Brezis and Kamin [6] who proved
that (3.1), with p = 2 and 0 < ¢ < 1, has a bounded solution u on R™ if and only if
No € L*>(R"); moreover, such a solution is unique, and there exists a constant ¢ > 0 so
that

1

c! (NG(m)) " <u(zr) <cNo(z), ze€R™ (3.5)

The lower bound in (3.5), which is generalized in (2.10) and (2.13), holds for all
solutions. On the other hand, the upper bound is valid only for bounded solutions. Some
generalizations of the upper bound to possibly singular solutions in the form

u(z) < e [No(x) + (Ncr(a:)) } , TER",

under additional assumptions on o, can be found in [9].

As was pointed out in [6], both the lower and upper estimates in (3.5) are sharp in a
sense. However, there is a substantial gap between them. In Theorem 3.1 below this gap
is bridged by using Ko + (NO')I%‘I. The corresponding pointwise estimates hold for all,
possibly singular solutions, as well as more general nonlinear equations.

In the context of iractional Laplacian equations (3.2), we denote by I, the Riesz poten-
tial of order « € (0,n) on R™:

Top = |z[* "% w = c(x,n) (—A) 2,

for p € M*(R"). In what follows, the normalization constant ¢(«, n) will be dropped for
the sake of convenience; in particular, I,y = Nu stands for the Newtonian potential.

—— 24 [.E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
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We now introduce some elements of nonlinear potential theory which is intrinsic to
(3.2). Let B= B(z,r) ={y € R": |x —y| < r} be a ball in R"”, and let o5 = xp o stand
for the measure o restricted to B. By k(B) we denote the least constant in the localized
integral inequality

||chv||L‘1(ch) < K(B) V(Rn)’ Vv e M+(Rn)’ (36)

where 0 < g<1and 0 < x <n.

We observe that the constant k(B) does not change if we restrict ourselves to absolutely
continuous v € L} (R™) on the right-hand side of (3.6).

We define the corresponding nonlinear potential of Wolif type by

Koy y0(z) = /Ooo [K(B(x"”))]l_q% r € R (3.7)

rn—o )

The following condition ensures that both K ,0 and I o are not identically infinite:

/O" [K(BO, )T dr /O" o(BO,r))dr _ (3.8)

Y

T r

o r

Clearly, the first part of (3.8) is equivalent to K ,0 # +00, whereas the second one is
equivalent to I,0 # +o00 (and I,0 < +00 a.e.)
Note that solutions w € L{ (R", do) to (3.2) are understood in the weak sense.

loc

Theorem 3.1. Let 0 < g < 1, 0 < x < n, and 0 € MH(R").
(i) If (3.8) holds, then there exists a minimal solution u > 0 to (3.2) such that

¢ Kaqo + (160) 77 | < < e[ Koggo + (Ie0) 77 (3.9)

where ¢ > 0 is a constant which depends only on q, «, and n.

(ii) Conversely, if there exists a nontrivial (super) solution v to (3.2), then (3.8)
holds, and v > u, where u is the minimal solution of statement (i).

We observe that neither of the two parts of the condition (3.8) implies the other one.
Condition /40 < oo a.e. alone is not enough to ensure the existence of a global solution
u even if all the local embedding constants k(B) in (3.6) are finite, unless o is radially
symmetric (see [9]).

4. Existence of solutions for sublinear integral equations

In this section, G: Q2 x Q — (0,4o00] is a lower semicontinuous, quasi-symmetric
kernel on §2 x Q) that satisfies (2.14) along with the weak maximum principle (2.11), on a
locally compact Hausdorff space €. Let us fix a locally finite Radon measure 0 € M ().

In [23;25;27], necessary and sufficient conditions are obtained for the existence of
positive (super) solutions to the sublinear integral equation

u=G(uldo), 0<u<+4oo do—ae. infQ, (4.1)

The existence of solutions in Lebesgue spaces, u € LY(£2, o), turned out to be related
to weighted norm inequalities of the type

|G(f do)|r(udo) < C || f

L(@Qdo)s  Vf € L¥(Q,do), (4.2)
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for integral operators GG in the case 0 <7 < s < +00, s > 1.
The most important and most difficult case is when r =¢ (0 <r < 1) and s =1, i.e,,

|G(f do)||Lsae) < ClIf 2100y, VS € LN, do). (4.3)

In the special case of Green’s kernels and the corresponding elliptic operators L, (4.3)
boils down to a non-standard trace inequality

&l zs(0.d0) < C |1 LS| p1(0ua0), Vb € C5(), L > 0. (4.4)

It will be more convenient, as it often happens in the end-point case p = 1, to replace
(4.3) with a similar inequality for measures v € M™ () in place of L*(£,do),

|GV Laae) < CV][, ¥veMT(Q), (4.5)

where ||v|| = v(§2). Clearly, (4.5)==-(4.3) if we set dv = |f|do. The converse is also true
in many instances.

The following theorem demonstrates that a positive solution u € L4(€, o) to (4.1)
exists if and only if (4.5) holds. The same condition characterizes the existence of a positive
supersolution u € L4(€2, o) such that

u>Glo), 0<u<4oo do—ae. inf. (4.6)

Theorem 4.1. Let 0 € M*(Q) and 0 < ¢ < 1. Suppose G is a lower semicontinuous,
quasi-symmetric kernel which satisfies the weak maximum principle. Then the following
statements are equivalent:

1) There exists a positive constant C' = C(o,G) such that (4.5) holds.
2) There exists a supersolution u € L(Q), do) such that (4.6) holds.
3) There exists a solution u € L1(2,do) to (4.1).

This theorem is proved in [23] for more general non-negative kernels under the ad-
ditional non-degeneracy assumption on the kernel G, which is in fact necessary for the
existence of a positive solution. Non-degeneracy of G is not needed for the existence of a
non-trivial positive super-solution.

The next theorem gives some necessary and also close sufficient conditions for (4.5)
to hold.

Theorem 4.2. Let 0 € M*(QQ), and 0 < q¢ < 1. Suppose G is a quasi-symmetric,
non-degenerate kernel which satisfies the weak maximum principle.

1) If (4.5) holds, then Go € LT (S, 0).
2) If Go € LT, 0), then (4.5) holds.

Here L(Q, o) is the corresponding Lorentz space (see [26]).
It is shown in [23] that, without the assumption that G satisfies the weak maximum
principle, the condition

/Q(Gcr)sdcr < 0 4.7)

is necessary for the existence of a (super)solution u € L(£2,0) to (4.1) only

V5 —1
2

q
1—q

if ¢ € (0, qo, where

with s =

=0.61...

o =

e—— 26 [.E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
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denotes the conjugate golden ratio. For general measures o, the existence of a positive
solution u € L%(2, o) does not guarantee that (4.7) holds if ¢ € (go,1), or s # L - for all
€ (0,1), even for symmetric positive kernels G.

Another characterization of the strong type inequality (4.5) can be deduced from Mau-
rey’s results [21]: it is equivalent to the existence of a nonnegative function F' € L'(Q, o)
which satisfies

sup/ G(z,y) F %dcr(x) < +00.
yeQ
This is a dual reformulation of (4.5), which does not require G to satisfy the weak maximum
principle. In the discrete case where {2 consists of a finite number of points, it represents
the duality of the two basic concave programming problems (see [1, Sec. 5.7]).
We also give in [23;25; 27] explicit characterizations of the weak type (1, ¢)-inequality

|GV|| oo (0,400 < C||V]l,  for all v.e MT(Q), (4.8)

for any ¢ > 0, in terms of energy estimates, as well as capacities.

In [23], we demonstrate how to remove the extra assumption imposed in Theorem 4.1
that a (super)solution u € L9(f2, o) globally. We prove the following theorem where we
only assume that u € L] (o), or equivalently, 0 < u < 400 do-a.e., provided the kernel
G satisfies a weak form of the complete maximum principle, or alternatively if G is a
quasi-metric kernel (see, e.g., [11;18;23]).

The weak form (with constant b > 1) of the complete comparison principle, also called
the domination principle, says the following:

Gu(z) < wv(z) on supp (1), Gu < 400 du — a.e. = Gu(z) < bv(x) on Q,

for any positive measure p and positive superharmonic function v.
With a special function m satislying 0 < m < +o0o do-a.e., known as a modifier
[11; 18], we can modify the kernel GG, so that the modified kernel

G(z,y)
m(x) m(y)
satisfies the weak maximum principle (2.11). This makes it possible to apply Theorem 4.1

with K in place of G, and consider v € L{ (2, o). A typical modifier that works for general
kernels G' which satisfy the complete maximum principle is given by

m(z) = min{l, G(z,z)}, x€Q, (4.10)

K(x,y) = , T,y €, (4.9)

where xq is a fixed pole in Q [19].

We say that G is a quasimetric kernel with quasimetric constant k > 0 provided
G is symmetric and d(z,y) = @ satisfies the quasimetric triangle inequality with
quasimetric constant k, i.e.,

d(z,y) < k[d(z,2) + d(z,y)], (4.11)

for any x,y, z € Q. Here d(z,y): 2 x Q — [0,400).
The kernel G is quasimetrically modifiable with constant «k if there exists a modifier
m such that
G(z,y)

m(x)m(y)
is a quasimetric kernel with quasimetric constant .
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Theorem 4.3. Let 0 € MT(Q) and 0 < ¢ < 1. Suppose G is a quasi-symmetric positive
kernel, continuous in the extended sense on §2 X (), which either (a) satisfies the complete
maximum principle, or (b) is quasi-metrically modifiable. Then the following statements
are equivalent:

1) There exists a positive constant C such that the weighted norm inequality
GV Lagmasy < C / mdv, forall ve M*(Q), (4.13)
Q

holds, where the modifier m(zx) is given by (4.10) for some xqy € Q.

2) There exists a positive (super) solution u to (4.1) such that v € Ll _.(Q,0) (or
equivalently 0 < u < +oo do-a.e.)

Theorem 4.3 yields a characterization of the existence of weak solutions u € L{ (2, 0)
to the fractional Laplacian equation (1.5) in general domains €2 with positive Green’s function
G for 0 < o < 2, or the entire space R", or balls, or hali-spaces in R", for 0 < o« < n
(quasi-metric kernels (7) as discussed in the introduction. In the classical case o = 2, such
solutions are the so-called very weak solutions for bounded C?-domains € (see, e.g., [20]).

In the case 2 = R", an alternative criterion for the existence of weak solutions u €
€ L] (R™ o) to the fractional Laplacian equation (3.2) based on localization of (4.5) is

discussed in Sec. 3 above.

5. Higher integrability of solutions

Under the assumptions on the kernel G imposed at the beginning of Sec. 4, let us
consider conditions on o which ensure the existence of solutions u € L"(2, o) with r > 0
to the sublinear integral equation (4.1). In this case, a simple necessary and sufficient
condition in terms of the energy (4.7) was obtained in [27]. In particular, these results were
used in [24] to establish conditions for the existence of solutions u € L"(2, dz) (now with
respect to Lebesgue measure) to the fractional Laplacian equation (1.5) in a general domain
Q) with positive Green’s function G, and also W'?(Q) solutions to divergence form sublinear
elliptic equations (1.3). These results are discussed in Sec. 6 below.

The following theorem (see [27]) characterizes the existence of solutions u € L"(2, o)
for r > ¢, along with related weighted norm inequalities

|G(fdo)llLre < Cllfllere, Yf € LP(Q,0). (5.1)

Theorem 5.1. Let 0 € MT(QQ). Suppose G is a positive, lower semicontinuous, quasi-
symmetric kernel on ) which satisfies the weak maximum principle.
() If 1 <p<+ooand 0 <r<p, then (5.1) holds if and only if

/Q(GG)PpTTdG < +00. (5.2)

(ii) If 0 < qg<1andq<r < oo, then there exists a positive (super) solution u €
€ L"(Q,do) to (4.1) if and only if (5.1) holds with p = g, or equivalently by statement (i),

/Q(Go)fqda < 400. (5.3)
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Remark 5.2. We observe that the “if” parts of statements (i) and (ii) of Theorem 5.1 fail if
p =1, and r = q, respectively. The “only if” parts hold for all 0 < r < p in statement (i),
and r > 0 in statement (ii).

Remark 5.3. It is known that inequality (5.1) with p = g > 1 in the case 0 < ¢ < 1 yields
the existence of a positive (super) solution u € L"(£2, o) for (4.1). This statement follows
from a lemma due to Gagliardo [14], and does not require G to be quasi-symmetric or to
satisfy the weak maximum principle. However, the converse statement fails without the
weak maximum principle (see [23] in the case r = q).

Remark 5.4. Without the assumption that GG satisfies the weak maximum principle, the
“only if” parts of statement (i) (with p = g > 1) and statement (ii) (with » > ¢) of Theorem

5.1 hold only for 0 < 7 < 1 — ¢% see [27]. The case r = ¢ when 0 < ¢ < q ‘[ L is
discussed above.

6. Positive solutions in W1P(Q2) and L"(Q)

In this section, we present sharp conditions on the coefficient o which ensure the
existence a positive weak solution v € W'P(Q) or u € L"(2,0) to the sublinear elliptic
Dirichlet problem

{—div(.AVu) =ou!, u>0 in ), 6.1)

u=>0 on 012,

where 0 < ¢ < 1, and o is a locally integrable function, or measure, in a domain 2 C R"™ with
nonnegative Green’s function GG associated with the uniformly elliptic operator —div(AV),
for a symmetric matrix A € L®(Q2)"*™. Some of these results obtained in [24] hold for
analogous fractional Laplacian equations (1.5) in domains {2 with positive Green’s function.

More generally, for a lower semicontinuous kernel G: Q x Q — (0, 4+o00], where 2 C
C R", we denote by

G(f do)(x /ny do(y), e,

the corresponding integral operator, where o € M™*(Q), the class of positive locally finite
Borel measures in 2.
We study positive solutions u € L"(£2,do), as well as w € L"(2,dx), for the integral
equation
u=G(uldo), 0<u<+4oco do—ae. inf), (6.2)

where 0 < ¢ < 1. If G is Green’s kernel associated with the Laplacian in a domain 2 C R",
then (6.2) is equivalent to the sublinear elliptic boundary value problem (6.1) (see [23]).

As above, we assume that the kernel GG of the integral operator GG is lower semicontin-
uous, quasi-symmetric, and satisfies a weak maximum principle. In Theorem 6.4 below an
additional assumption is imposed on G,

G(r,y) < T,y € Q, (6.3)

= o=y

for 0 < o < n; here C' is a positive constant which does not depend on z,y.
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Such restrictions are satisfied by the Green kernel associated with many elliptic oper-
ators, including the fractional Laplacian (—A)2 and .A-Laplacian (with « = 2) in a domain
QCR™

The following theorems and corollaries are proved in [24].

Theorem 6.1. Let 0 € MT(Q), where Q@ C R™ (n > 1) is a domain with a positive
Green’s function G associated with —div(AV:). Let 0 < ¢ < 1 and v > 0. Then there
exists a positive solution u to (6.1) such that

/ IVul*u ! dr < oo (6.4)
Q
if and only if
/ (Go) i do < +oo. (6.5)
Q

In particular, in the case y =1, the condition
1+q
/(G(r)l—q do < 400 (6.6)
0

is necessary and sufficient for the existence of a positive solution u € W(}’Q(Q) to (6.1).

Theorem 6.1 yields sufficient conditions for u € W, ?(Q) when 5 < p < 2. Here

W,y P(Q) stands for the homogeneous Sobolev space defined as the closure of C$°(€2) func-

tions in the norm )
Julwisoy = ( [ [Vulaz)’.
Q

n(14y)

Letting p = 755 with 0 <y < 1 in Theorem 6.1, we obtain the following corollary.
Corollary 6.2. Under the assumptions of Theorem 6.1, suppose that 5 < p < 2 and
n >3 If
p(n—2)
/(GG) a0t 'do < +00, (6.7)
Q

then there exists a positive solution u € Wy*(Q) to (6.1).

Corollary 6.3. Under the assumptions of Theorem 6.1, suppose o € L*(£2), where %

<s< #’M. Then there exists a positive solution u € W, (Q) N L"(Q) to (6.1) with
n(l—q)s

— n=g)s —
P= it and r = =—=.

In the following theorem we give conditions for the existence of positive solutions
u € L"(Q,dx) for more general kernels G.
Theorem 6.4. Let Q C R" (n > 1), and 0 € MT(Q). Let 0 < ¢ < 1. Suppose G is a
positive, lower semicontinuous kernel on ) x Q which is quasi-symmetric and satisfies
the weak maximum principle.

(i) If there exists a solution u € L"(Q,dx), r > 0, to (6.2), then

<

/Q(Gcr)liqu < +00. (6.8)

(ii) Suppose additionally that G satisfies condition (6.3) for some 0 < &« < n. If

L < r<ooand
n—«

/Q(GO‘) (=D “ldo < ~+00, (6.9)
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then there exists a positive solution u € L"(Q,dx) to (6.2).

Corollary 6.5. Under the assumptions of Theorem 6.4, suppose that o € L*(), dx), where
m < s < L. Then there exists a positive solution u € L"(Q),dx) to (6.2), where
_ n(l=g)s
r=——"L
n—««s

Corollaries 6.3 and 6.5 for bounded domains §2 were obtained earlier by Boccardo and
Orsina [4]. We observe that the restrictions on s in these corollaries, and consequently on
the exponents vy, p and r in Theorem 6.1, Theorem 6.4, and Corollary 6.2, are sharp.

There are also weak-type analogues of these results for Marcinkiewicz spaces L™ as
in [5], based on the corresponding weak-type weighted norm inequalities (see [23;25;27]).

The proof of Theorem 6.1 in [24] makes use of the weighted norm inequality

HG(f dG)HLT(Q,dU) S C ||f| L5(9Q,do) \V/f S LS(Q,dO'>, (610)

for integral operators GG in the case 1 < r < s < +00 considered in Sec. 3.
The proof of Theorem 6.4 uses both (6.10) and a similar weighted norm inequality with
Lebesgue measure on the left-hand side,

|G(f do)||r(@.an) < C[|f]

for 1 <r < oo, 1< s < +4o00. Such inequalities in the equivalent dual form
IGFllL @a0) < C Il @amy VS € L7 (2, de), (6.12)

were characterized in the special case where Q = R™ and G = (—A)~? is the Riesz potential
of order & € (0,n), by Maz'ya for r > s > 1, and Maz'ya and Netrusov for 1 < r < s, in
terms of Sobolev capacities, and later by Cascante, Ortega and the author in terms of Wolii
potentials (see [7;22]).

In [24], we employ an alternative characterization in terms of Green’s potentials G'o as
in Theorem 5.1 above, which is sufficient for both (6.10) and (6.11) simultaneously.

Ls(Qdo), Vf € L¥(,do), (6.11)
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IMOTOYEYHBIE OIIEHKHU U KPUTEPUU CYIIIECTBOBAHUSA PEIIEHUA
CYBJIMHEUHBIX AJJIMINITUIECKUX YPABHEHUA

Hrops E. Bepouukuii

[Tpodeccop, PakynpTeT MaTeMaTUKH,
University of Missouri
verbitskyi@missouri.edu

Columbia, MO 65211, USA

AnHoTtauusa. B pa6ote npezcras/eH 0630p MOCAEIHUX Pe3yJabTaTOB O MOJO-
JKUTEJbHBIX PEeIIeHUSIX 3JIUNTHYeCKUX ypaBHeHHH Tuna —Lu + Vu? = f, rne
L — saaunTtudeckuil oneparop B auBepreHTHo# ¢opme, 0 < g <1, f>0uV —
(YHKIHS, KOTOpasi MOXKeT H3MeHsiThb 3Hak, B obsactu {2 C R™ uiu Ha BeCOBOM
PUMaHOBOM MHOT000pa3uu C MoJoKUTebHOH (GyHKUHeH [puHa G. O6cyxnaorces
BOIIPOCH! CYIIECTBOBAHHS PElIeHHH, rJo0abHble HIXKHHE U BEPXHHE MOTOYEUHBIE
OLIEHKH KJIACCHYECKHX M C/1a0BIX PelleHHH u, a TakKe yCJIOBHs, o0ecrednBaloline
u € L"(Q) nam u € WHP(Q).

HekoTtopele M3 3THX pe3y/nbTaTOB MPUMEHUMBl K OLHOPOAHBIM CYOJMHEHHBIM
vHTerpasbHeiM ypaBHeHusM u = G(uldo) in Q, rie 0 < ¢ < 1,a 0= -V —
MOJIOXKHTE/IbHAST JIOKaJIbHO KOHeuyHast 6opesieckast Mepa B 2. 3nece G(f do)(x) =
= [ G(z,y), f(y)do(y) — uHTerpa/bHBIil ONepaTOp C MOJOKHTENbHBIM (KBa3H)
CUMMeTPUUHBIM sifipoM GG Ha () X (), KOTOpbIH yIOBJETBOPSIET CAa0OMy MPUHILIUITY
MakcHMyMa. Pesy/bTaTbl pacrnpoCTpaHsOTCS Ha MOJNOXKHTENbHble, BO3MOXKHO CHH-
TyJsipHBle, pPelleHHUs CyO/JMHEHHBIX YPaBHEHUH, colepKallux APOOHBIN JamiacuaH

(=AY u=ocu!, u>0 BQ,

e 0<g<1l,0<a<nuu=08°u Ha 6eckoHeuHOCTH B obsacTsx {2 C R”
¢ moJioKuTeNnbHOH (yHkuuer [puna G.

KuaroueBbie cioBa: cyO/uHelHble 3JJUNTHUECKHE YpaBHeHUs, GyHKUHUsA ['pu-
Ha, cJa0bli MPUHLHKI MaKCUMyMa, APOOHBIN JamJacHaH.
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