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Abstract. We give a survey of recent results on positive solutions to sublin-
ear elliptic equations of the type −𝐿𝑢+𝑉 𝑢𝑞 = 𝑓 , where 𝐿 is an elliptic operator
in divergence form, 0 < 𝑞 < 1, 𝑓 ≥ 0 and 𝑉 is a function that may change
sign, in a domain Ω ⊆ R𝑛, or in a weighted Riemannian manifold, with a positive
Green’s function 𝐺. We discuss the existence, as well as global lower and upper
pointwise estimates of classical and weak solutions 𝑢, and conditions that ensure
𝑢 ∈ 𝐿𝑟(Ω) or 𝑢 ∈ 𝑊 1,𝑝(Ω).

Some of these results are applicable to homogeneous sublinear integral equa-
tions 𝑢 = 𝐺(𝑢𝑞𝑑σ) in Ω, where 0 < 𝑞 < 1, and σ = −𝑉 is a positive locally finite
Borel measure in Ω. Here 𝐺(𝑓 𝑑σ)(𝑥) =

∫︀
Ω 𝐺(𝑥, 𝑦), 𝑓(𝑦) 𝑑σ(𝑦) is an integral

operator with positive (quasi) symmetric kernel 𝐺 on Ω × Ω which satisfies the
weak maximum principle. This includes positive solutions, possibly singular, to
sublinear equations involving the fractional Laplacian,

(−Δ)
α
2 𝑢 = σ𝑢𝑞, 𝑢 ≥ 0 in Ω,

where 0 < 𝑞 < 1, 0 < α < 𝑛 and 𝑢 = 0 in Ω𝑐 and at infinity in domains Ω ⊆ R𝑛

with positive Green’s function 𝐺.

Key words: sublinear elliptic equations, Green’s function, weak maximum
principle, fractional Laplacian.

1. Introduction

Let Ω be a connected open set in R𝑛, or a weighted Riemannian manifold (𝑀,𝑚) (see
Sec. 2 below). We give a survey of recent results on positive solutions 𝑢 to the sublinear
elliptic differential equation

−𝐿𝑢+ 𝑉 (𝑥)𝑢𝑞 = 𝑓, 𝑥 ∈ Ω, (1.1)
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where 0 < 𝑞 < 1, and
𝐿𝑢 = div(𝒜∇𝑢) (1.2)

is an elliptic operator with symmetric coefficients 𝒜 = (𝑎𝑖𝑗(𝑥))
𝑛
𝑖,𝑗=1 in divergence form, 𝑉

and 𝑓 are functions in Ω, and 𝑓 ≥ 0. Here 𝑉 (𝑥) may change sign, and no extra boundary
conditions are imposed on 𝑉 .

One of the main goals is to obtain global pointwise estimates of 𝑢 in terms of the
function ℎ which is defined as the minimal positive solution in Ω of the equation −𝐿ℎ = 𝑓,
where 𝑓 ̸≡ 0. We also consider positive solutions 𝑢 to the corresponding homogeneous
equation

−𝐿𝑢+ 𝑉 (𝑥)𝑢𝑞 = 0, (1.3)

with 𝑓 ≡ 0. In Sec. 2, we present lower pointwise estimates of solutions to (1.1) and (1.3)
obtained in [16; 17].

There are also analogues of these estimates for positive (super) solutions 𝑢 to sublinear
integral equations

𝑢+𝐺(𝑉 𝑢𝑞) = 𝐹, (1.4)

which involve the integral operator 𝐺𝑓(𝑥) =
∫︀
Ω 𝐺(𝑥, 𝑦) 𝑓(𝑦) 𝑑𝑦 with a general positive

kernel 𝐺 : Ω × Ω → (0,+∞]. If 𝐺 = 𝐺Ω is Green’s function associated with the elliptic
operator 𝐿 and 𝐹 = 𝐺𝑓 , then (1.4) is in a sense equivalent to (1.1).

In many cases it is enough to assume that the kernel 𝐺 is lower semicontinuous,
symmetric (or quasi-symmetric) and satisfies the weak maximum principle (see [16]), which
includes many non-local operators, for instance, the fractional Laplacian (−Δ)

α
2 . This leads

to pointwise estimates of solutions for (1.4) in the case where 𝑉 = −σ ≥ 0, and σ is a
locally integrable function, or locally finite positive Borel measure in Ω. In particular, we
obtain sharp pointwise estimates of solutions (possibly singular) and existence results for
the fractional Laplacian equation

(−Δ)
α
2 𝑢 = σ𝑢𝑞, 𝑢 ≥ 0 in Ω, 𝑢 = 0 in Ω𝑐, (1.5)

in general domains Ω ⊂ R𝑛 with positive Green’s function 𝐺 for 0 < α ≤ 2, or nice domains
(the entire space R𝑛, or balls, or half-spaces in R𝑛) for 0 < α < 𝑛.

For entire solutions on Ω = R𝑛 and 𝑉 = −σ ≥ 0, where σ is a locally finite positive
Borel measure in R𝑛, there are more complicated matching upper and lower bounds given in
terms of certain nonlinear potentials of Th. Wolff type [8–10]. Earlier pointwise estimates
for bounded positive solutions are due to Brezis and Kamin [6]. We consider such results in
Sec. 3.

In the case 𝑉 = −σ ≥ 0, there are necessary and sufficient conditions for the existence
of positive solutions 𝑢 ∈ 𝐿𝑞(Ω,σ) and 𝑢 ∈ 𝐿𝑞

loc(Ω,σ) to (1.4). The latter class includes all
positive solutions 0 < 𝑢 < +∞ 𝑑σ-a.e., and can be characterized either using certain
localization techniques developed in [8] in the case 𝐿 = (−Δ)

α
2 and Ω = R𝑛, or integral

inequalities with weights as in [23] in the general case. These results are discussed in Sec. 3
and Sec. 4.

We also present in Sec. 5 criteria for the existence of positive solutions to (1.4) of
higher integrability 𝑢 ∈ 𝐿𝑞+γ(Ω,σ) (γ > 0), which are easier to characterize and are useful
in applications (see [27]). In particular, the case γ = 1, i.e., solutions 𝑢 ∈ 𝐿1+𝑞(Ω,σ),
corresponds to finite energy solutions to sublinear elliptic equations (1.3) in the Dirichlet
space 𝑢 ∈ 𝑊 1,2(Ω) for uniformly elliptic operators 𝐿 in divergence form.
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Similar criteria for γ > 0 can be applied to deduce conditions on σ which ensure the
existence of positive solutions 𝑢 to (1.3) in Sobolev spaces 𝑊 1,𝑝(Ω) and Lebesgue spaces
𝐿𝑟(Ω, 𝑑𝑥) for general domains Ω ⊆ R𝑛 with positive Green’s functions (see [24; 25]). Some
earlier existence results of this type for σ ∈ 𝐿𝑠(Ω, 𝑑𝑥) in bounded domains Ω are due to
Boccardo and Orsina [4; 5]. Such existence theorems under more general assumptions on σ
which include measures (possibly singular with respect to Lebesgue measure) are discussed
in Sec. 6.

2. Lower pointwise estimates of supersolutions

In this section, we assume that Ω ⊆ R𝑛 is a connected open set, and consider the
divergence form operator

𝐿𝑢 = div(𝒜∇𝑢) (𝑥) =
𝑛∑︁

𝑖,𝑗=1

𝜕𝑥𝑖

(︀
𝑎𝑖𝑗 (𝑥) 𝜕𝑥𝑗

𝑢
)︀
, (2.1)

where 𝑎𝑖𝑗 are 𝐶2 functions in Ω, and 𝑎𝑖𝑗 = 𝑎𝑗𝑖. Assume that 𝐿 is elliptic, that is, the matrix
𝒜 = (𝑎𝑖𝑗 (𝑥)) is positive definite for any 𝑥 (the uniform ellipticity is not required).

Let us assume that the Dirichlet Green function of 𝐿 in Ω exists. We denote it by
𝐺Ω (𝑥, 𝑦). We set

ℎ (𝑥) = 𝐺𝑓(𝑥) =

∫︁
Ω

𝐺Ω (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦,

where 𝑓 ≥ 0 (𝑓 ̸≡ 0), and assume that ℎ (𝑥) < ∞ for all 𝑥 ∈ Ω (note also that ℎ (𝑥) > 0 in
Ω), and that the integral

𝐺(ℎ𝑞𝑉 )(𝑥) =

∫︁
Ω

𝐺Ω (𝑥, 𝑦)ℎ𝑞 (𝑦)𝑉 (𝑦) 𝑑𝑦 (2.2)

is well-defined.
An interesting special case is when 𝑓 ≡ 1, and ℎ is the solution of the Dirichlet

problem: {︃
−𝐿ℎ = 1 in Ω,

ℎ = 0 on 𝜕Ω.
(2.3)

In other words, ℎ(𝑥) = E𝑥[τΩ], where τΩ = inf{𝑡 : 𝑋𝑡 ̸∈ Ω} is the first exit time from
Ω of the (rescaled) Brownian motion 𝑋𝑡, and 𝑥 ∈ Ω is a starting point. For bounded 𝐶1,1

domains Ω, it is well known that ℎ(𝑥) ≃ 𝑑Ω(𝑥), where

𝑑Ω(𝑥) = dist(𝑥, 𝜕Ω). (2.4)

One of the main results of [17] in the case 0 < 𝑞 < 1 is the following global lower
estimate for a (super) solution 𝑢 > 0 to (1.1).
Theorem 2.1. Let Ω ⊆ R𝑛 be a domain with a positive Green function 𝐺Ω. Suppose
𝑉, 𝑓 ∈ 𝐶(Ω), and 𝑓 ≥ 0, 𝑓 ̸≡ 0 in Ω. Let 𝑢 ∈ 𝐶2(Ω) satisfy the inequality

−𝐿𝑢+ 𝑉 𝑢𝑞 ≥ 𝑓, 𝑢 > 0 in Ω. (2.5)

20 I.E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
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Set ℎ = 𝐺𝑓 and assume that ℎ < ∞ in Ω. Assume also that 𝐺Ω(ℎ𝑞𝑉 )(𝑥) is well-defined
for all 𝑥 ∈ Ω. Then the following estimate holds for all 𝑥 ∈ Ω :

𝑢(𝑥) ≥ ℎ(𝑥)

[︂
1− (1− 𝑞)

𝐺(ℎ𝑞𝑉 )(𝑥)

ℎ(𝑥)

]︂ 1
1−𝑞

+

. (2.6)

This theorem is actually proved in [17] in a more general context of elliptic operators
on weighted manifolds (𝑀,𝑚). We recall that if 𝑀 is a smooth Riemannian manifold with
the Riemannian metric tensor 𝑔 = (𝑔𝑖𝑗), then the associated Laplace — Beltrami operator
ℒ0 acts on 𝐶2 functions 𝑢 on 𝑀 and is given in any chart 𝑥1, ..., 𝑥𝑛 by

ℒ0𝑢 =
1√
det 𝑔

𝑛∑︁
𝑖,𝑗=1

𝜕𝑥𝑖

(︁√︀
det 𝑔𝑔𝑖𝑗𝜕𝑥𝑗

𝑢
)︁
.

Here det 𝑔 is the determinant of the matrix 𝑔 = (𝑔𝑖𝑗), and (𝑔𝑖𝑗) is the inverse matrix of
(𝑔𝑖𝑗). The Riemannian measure 𝑚0 is given in the same chart by

𝑑𝑚0 =
√︀
det 𝑔𝑑𝑥1...𝑑𝑥𝑛,

so that ℒ0 is symmetric with respect to 𝑚0. Using the gradient operator ∇ defined by

(∇𝑢)𝑖 =
𝑛∑︁

𝑗=1

𝑔𝑖𝑗𝜕𝑥𝑗
𝑢

and the divergence div on vector fields 𝐹 𝑖

div𝐹 =
1√
det 𝑔

𝑛∑︁
𝑖=1

𝜕𝑥𝑖

(︁√︀
det 𝑔𝐹 𝑖

)︁
,

we have
ℒ0 = div ∘ ∇.

Now let 𝜔 be a smooth positive function on 𝑀 and consider the measure 𝑚 on 𝑀
given by

𝑑𝑚 = 𝜔𝑑𝑚0.

The couple (𝑀,𝑚) is called a weighted manifold, and 𝜔 in this context is called a weight
(see [14]). The following operator ℒ

ℒ𝑢 :=
1

𝜔
div (𝜔∇𝑢) =

1

𝜔
√
det 𝑔

𝑛∑︁
𝑖,𝑗=1

𝜕𝑥𝑖

(︁
𝜔
√︀
det 𝑔𝑔𝑖𝑗𝜕𝑥𝑗

𝑢
)︁

(2.7)

acting on 𝐶2 functions 𝑢 on 𝑀 , is called the (weighted) Laplace operator of (𝑀,𝑚). This
operator ℒ, which is symmetric with respect to measure 𝑚, can be used in place of the
operator 𝐿 in Ω ⊆ R𝑛 above.

There is also a similar lower estimate for positive (super) solutions to the homogeneous
equation (1.3).
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Theorem 2.2. Let Ω ⊆ R𝑛 be a domain with a positive Green function 𝐺Ω. Suppose
𝑉 ∈ 𝐶(Ω), and 𝑢 ∈ 𝐶2(Ω) satisfies the inequality

−𝐿𝑢+ 𝑉 𝑢𝑞 ≥ 0, 𝑢 ≥ 0 in Ω, (2.8)

where 0 < 𝑞 < 1. Assume also that 𝐺𝑉 (𝑥) is well-defined for all 𝑥 ∈ Ω.
Then the following estimate holds for all 𝑥 ∈ Ω :

𝑢(𝑥) ≥ [−(1− 𝑞)𝐺𝑉 (𝑥)]
1

1−𝑞

+ . (2.9)

Similar global pointwise estimates are obtained in [17] for all exponents 𝑞 ∈ R (𝑞 ̸= 0),
but we do not consider the case 𝑞 ̸∈ (0, 1) here. Also, the preceding estimate remains true
for nonnegative solutions 𝑢 if the integration in the Green’s potentials 𝐺Ω(ℎ𝑞𝑉 ) and 𝐺Ω𝑉
respectively is taken over the set Ω+ = {𝑥 ∈ Ω: 𝑢 > 0} in place of Ω. Note that the
differential inequalities (2.5) and (2.8) in Theorem 2.1 and Theorem 2.2 respectively are
understood in the classical sense.

In the case 𝑉 = −σ ≤ 0, where σ is a locally finite measure in Ω, the preceding
estimate yields

𝑢(𝑥) ≥
[︂
(1− 𝑞)

∫︁
Ω

𝐺Ω(𝑥, 𝑦)𝑑σ(𝑦)

]︂ 1
1−𝑞

, (2.10)

which holds for all non-trivial weak solutions 𝑢 (possibly singular).
This estimate was obtained for the Laplacian 𝐿 = Δ in the case Ω = R𝑛 in [6], without

specifying the sharp constant (1− 𝑞)
1

1−𝑞 , under some additional assumptions on σ ≥ 0 (see
also [9]).

There are analogues of this estimate for integral operators with general positive kernels
𝐺 : Ω×Ω → (0,+∞] on a locally compact Hausdorff space Ω that are lower semicontinuous,
symmetric, and satisfy the weak maximum principle with constant b ≥ 1 (see [16]).

For a locally finite Radon measure ν ∈ ℳ+(Ω), we denote by 𝐺ν the potential

𝐺ν(𝑥) =

∫︁
Ω

𝐺(𝑥, 𝑦) 𝑑ν(𝑦).

We recall that the kernel 𝐺 is said to satisfy the weak maximum principle (with
constant b ≥ 1) provided that

𝐺ν(𝑥) ≤ 𝑀, ∀𝑥 ∈ suppν =⇒ 𝐺ν(𝑥) ≤ b𝑀, ∀𝑥 ∈ Ω, (2.11)

for any constant 𝑀 > 0 and ν ∈ ℳ+(Ω). When b = 1, we say that 𝐺 satisfies the strong
maximum principle.

These assumptions hold for many non-local operators 𝐿 of interest in nonlinear analysis,
in particular, the fractional Laplacian operators (−Δ)

α
2 in domains Ω ⊆ R𝑛. For such kernels

𝐺 and σ ∈ ℳ+(Ω), let

𝐺(𝑓 𝑑σ)(𝑥) =

∫︁
Ω

𝐺(𝑥, 𝑦) 𝑓(𝑦) 𝑑σ(𝑦), 𝑥 ∈ Ω,

where 𝑓 ≥ 0 is a measurable function.
If 𝑢 > 0 𝑑σ-a.e. is a supersolution, i.e.,

𝐺(𝑢𝑞𝑑σ)(𝑥) ≤ 𝑢(𝑥) < ∞ 𝑑σ−a.e., (2.12)

22 I.E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
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then

𝑢(𝑥) ≥ (1− 𝑞)
1

1−𝑞 b−
𝑞

1−𝑞

[︁
𝐺σ(𝑥)

]︁ 1
1−𝑞

𝑑σ−a.e. in Ω. (2.13)

The constant (1 − 𝑞)
1

1−𝑞 in (2.13) in the case b = 1 coincides with that in (2.10). Similar
results hold for quasi-symmetric kernels 𝐺 such that there exists a constant a > 0 for which

𝐺(𝑥, 𝑦) ≤ a𝐺(𝑥, 𝑦), 𝑥, 𝑦 ∈ Ω, (2.14)

with a constant on the right-hand side of (2.13) depending on both a and b. See [2] where
quasi-symmetry is established for many elliptic operators in non-divergence form. Properties
(2.11) and (2.14) will be used extensively in Sections 4 and 6 below.

3. Matching upper and lower pointwise estimates of solutions

In this section, we discuss recent results established in [8] for entire solutions to
quasilinear elliptic equations of the type⎧⎨⎩

−Δ𝑝𝑢 = σ𝑢𝑞 in R𝑛,

lim inf
𝑥→∞

𝑢(𝑥) = 0, 𝑢 > 0,
(3.1)

where 0 < 𝑞 < 𝑝 − 1. Here Δ𝑝 = div(∇𝑢|∇𝑢|𝑝−2) is the 𝑝-Laplace operator, and σ ≥ 0
is an arbitrary locally integrable function, or locally finite Borel measure, σ ∈ ℳ+(R𝑛); if
σ ∈ 𝐿1

loc(R𝑛) we write 𝑑σ = σ 𝑑𝑥.
The main goal is to give necessary and sufficient conditions on σ for the existence

of weak solutions to (3.1), and obtain matching upper and lower global pointwise bounds
for positive solutions. In this approach, key integral inequalities are identified, and new
nonlinear potentials of Wolff type are constructed that are intrinsic to a number of similar
problems.

This approach is applicable to general quasilinear 𝒜-Laplace operators of divergence
type div𝒜(𝑥,∇𝑢) under standard boundedness and structural assumptions on 𝒜, as well as
to fully nonlinear 𝑘-Hessian operators, and the fractional Laplacian equations (see [8]).

We will restrict ourselves here to the case 𝑝 = 2 and linear operators div(𝒜∇𝑢)
under the uniform ellipticity assumption on the matrix 𝒜 ∈ 𝐿∞(R𝑛)𝑛×𝑛. In this setup, the
fundamental solution of the 𝒜-Laplacian is known to be pointwise equivalent to that of the
Laplacian, which reduces the problem to estimates involving Newtonian potentials.

In fact, we will consider below the fractional Laplacian equations,⎧⎪⎨⎪⎩
(−Δ)

α
2 𝑢 = σ𝑢𝑞 in R𝑛,

lim inf
𝑥→∞

𝑢(𝑥) = 0, 𝑢 > 0,
(3.2)

for 0 < 𝑞 < 1 and 0 < α < 𝑛; this includes the range α > 2 where the usual maximum
principle is not available.

In the classical case 𝑝 = 2, equation (3.1), or equivalently (3.2) with α = 2, provides
a model sublinear elliptic problem if 0 < 𝑞 < 1. It is easy to see that it is equivalent to
the integral equation 𝑢 = 𝑁(𝑢𝑞𝑑σ), where 𝑁𝜔 = (−Δ)−1𝜔 is the Newtonian potential of
𝑑𝜔 = 𝑢𝑞𝑑σ on R𝑛.
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As we emphasize in [8], such problems are governed by the important integral inequal-
ity (︂∫︁

R𝑛

|ϕ|𝑞 𝑑σ
)︂ 1

𝑞

≤ κ ‖Δϕ‖𝐿1(R𝑛), (3.3)

for all test functions ϕ ∈ 𝐶2(R𝑛) vanishing at infinity such that −Δϕ ≥ 0. This inequality
turns out to be necessary and sufficient for the existence of a positive solution 𝑢 ∈ 𝐿𝑞(R𝑛,σ)
to (3.1) if 𝑝 = 2 and 0 < 𝑞 < 1.

Inequality (3.3) represents the end-point case of the well-studied (𝐿𝑝, 𝐿𝑞) trace inequal-
ities for 𝑝 > 1. A comprehensive treatment of trace inequalities in that case in terms of
Sobolev capacities can be found in [22].

To characterize the existence of arbitrary weak solutions 𝑢 ∈ 𝐿𝑞
loc(R𝑛,σ), and obtain

sharp global pointwise estimates, a localization procedure is used in [8] which involves the
so-called intrinsic Wolff potentials.

More precisely, one needs to consider a localized version of (3.3) where the measure
σ is replaced with σ𝐵 = 𝜒𝐵 σ restricted to a ball 𝐵 = 𝐵(𝑥, 𝑟), and the corresponding best
constant κ is denoted by κ(𝐵). These constants are used as building blocks in the key tool,
a potential of Th. Wolff type (see [1] for the theory and history of Wolff’s potentials),

𝐾σ(𝑥) =

∫︁ ∞

0

[κ(𝐵(𝑥, 𝑟))]
𝑞

1−𝑞

𝑟𝑛−2

𝑑𝑟

𝑟
, 𝑥 ∈ R𝑛. (3.4)

This nonlinear potential, together with the usual Newtonian potential 𝑁σ, provides sharp
bilateral estimates of solutions in the case 𝑝 = 2 and 0 < 𝑞 < 1.

This work has been motivated by the results of Brezis and Kamin [6] who proved
that (3.1), with 𝑝 = 2 and 0 < 𝑞 < 1, has a bounded solution 𝑢 on R𝑛 if and only if
Nσ ∈ 𝐿∞(R𝑛); moreover, such a solution is unique, and there exists a constant 𝑐 > 0 so
that

𝑐−1
(︁
𝑁σ(𝑥)

)︁ 1
1−𝑞 ≤ 𝑢(𝑥) ≤ 𝑐𝑁σ(𝑥), 𝑥 ∈ R𝑛. (3.5)

The lower bound in (3.5), which is generalized in (2.10) and (2.13), holds for all
solutions. On the other hand, the upper bound is valid only for bounded solutions. Some
generalizations of the upper bound to possibly singular solutions in the form

𝑢(𝑥) ≤ 𝑐

[︂
𝑁σ(𝑥) +

(︁
𝑁σ(𝑥)

)︁ 1
1−𝑞

]︂
, 𝑥 ∈ R𝑛,

under additional assumptions on σ, can be found in [9].
As was pointed out in [6], both the lower and upper estimates in (3.5) are sharp in a

sense. However, there is a substantial gap between them. In Theorem 3.1 below this gap
is bridged by using 𝐾σ + (𝑁σ)

1
1−𝑞 . The corresponding pointwise estimates hold for all,

possibly singular solutions, as well as more general nonlinear equations.
In the context of fractional Laplacian equations (3.2), we denote by 𝐼α the Riesz poten-

tial of order α ∈ (0, 𝑛) on R𝑛:

𝐼αµ = |𝑥|α−𝑛 ⋆ µ = 𝑐(α, 𝑛) (−Δ)−
α
2 µ,

for µ ∈ ℳ+(R𝑛). In what follows, the normalization constant 𝑐(α, 𝑛) will be dropped for
the sake of convenience; in particular, 𝐼2µ = 𝑁µ stands for the Newtonian potential.
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We now introduce some elements of nonlinear potential theory which is intrinsic to
(3.2). Let 𝐵 = 𝐵(𝑥, 𝑟) = {𝑦 ∈ R𝑛 : |𝑥− 𝑦| < 𝑟} be a ball in R𝑛, and let σ𝐵 = 𝜒𝐵 σ stand
for the measure σ restricted to 𝐵. By κ(𝐵) we denote the least constant in the localized
integral inequality

‖𝐼αν‖𝐿𝑞(𝑑σ𝐵) ≤ κ(𝐵)ν(R𝑛), ∀ν ∈ ℳ+(R𝑛), (3.6)

where 0 < 𝑞 < 1 and 0 < α < 𝑛.
We observe that the constant κ(𝐵) does not change if we restrict ourselves to absolutely

continuous ν ∈ 𝐿1
+(R𝑛) on the right-hand side of (3.6).

We define the corresponding nonlinear potential of Wolff type by

𝐾α,𝑞σ(𝑥) =

∫︁ ∞

0

[κ(𝐵(𝑥, 𝑟))]
𝑞

1−𝑞

𝑟𝑛−α
𝑑𝑟

𝑟
, 𝑥 ∈ R𝑛. (3.7)

The following condition ensures that both 𝐾α,𝑞σ and 𝐼ασ are not identically infinite:∫︁ ∞

1

[κ(𝐵(0, 𝑟))]
𝑞

1−𝑞

𝑟𝑛−α
𝑑𝑟

𝑟
+

∫︁ ∞

1

σ(𝐵(0, 𝑟))

𝑟𝑛−α
𝑑𝑟

𝑟
< ∞, (3.8)

Clearly, the first part of (3.8) is equivalent to 𝐾α,𝑞σ ̸≡ +∞, whereas the second one is
equivalent to 𝐼ασ ̸≡ +∞ (and 𝐼ασ < +∞ a.e.)

Note that solutions 𝑢 ∈ 𝐿𝑞
loc(R𝑛, 𝑑σ) to (3.2) are understood in the weak sense.

Theorem 3.1. Let 0 < 𝑞 < 1, 0 < α < 𝑛, and σ ∈ ℳ+(R𝑛).
(i) If (3.8) holds, then there exists a minimal solution 𝑢 > 0 to (3.2) such that

𝑐−1
[︁
𝐾α,𝑞σ+ (𝐼ασ)

1
1−𝑞

]︁
≤ 𝑢 ≤ 𝑐

[︁
𝐾α,𝑞σ+ (𝐼ασ)

1
1−𝑞

]︁
, (3.9)

where 𝑐 > 0 is a constant which depends only on 𝑞, α, and 𝑛.
(ii) Conversely, if there exists a nontrivial (super) solution 𝑣 to (3.2), then (3.8)

holds, and 𝑣 ≥ 𝑢, where 𝑢 is the minimal solution of statement (i).
We observe that neither of the two parts of the condition (3.8) implies the other one.

Condition 𝐼ασ < ∞ a.e. alone is not enough to ensure the existence of a global solution
𝑢 even if all the local embedding constants κ(𝐵) in (3.6) are finite, unless σ is radially
symmetric (see [9]).

4. Existence of solutions for sublinear integral equations

In this section, 𝐺 : Ω × Ω → (0,+∞] is a lower semicontinuous, quasi-symmetric
kernel on Ω × Ω that satisfies (2.14) along with the weak maximum principle (2.11), on a
locally compact Hausdorff space Ω. Let us fix a locally finite Radon measure σ ∈ ℳ+(Ω).

In [23; 25; 27], necessary and sufficient conditions are obtained for the existence of
positive (super) solutions to the sublinear integral equation

𝑢 = 𝐺(𝑢𝑞𝑑σ), 0 < 𝑢 < +∞ 𝑑σ− a.e. in Ω, (4.1)

The existence of solutions in Lebesgue spaces, 𝑢 ∈ 𝐿γ(Ω,σ), turned out to be related
to weighted norm inequalities of the type

‖𝐺(𝑓 𝑑σ)‖𝐿𝑟(Ω,𝑑σ) ≤ 𝐶 ‖𝑓‖𝐿𝑠(Ω,𝑑σ), ∀𝑓 ∈ 𝐿𝑠(Ω, 𝑑σ), (4.2)
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for integral operators 𝐺 in the case 0 < 𝑟 < 𝑠 < +∞, 𝑠 ≥ 1.
The most important and most difficult case is when 𝑟 = 𝑞 (0 < 𝑟 < 1) and 𝑠 = 1, i.e.,

‖𝐺(𝑓 𝑑σ)‖𝐿𝑞(Ω,𝑑σ) ≤ 𝐶 ‖𝑓‖𝐿1(Ω,𝑑σ), ∀𝑓 ∈ 𝐿1(Ω, 𝑑σ). (4.3)

In the special case of Green’s kernels and the corresponding elliptic operators 𝐿, (4.3)
boils down to a non-standard trace inequality

‖φ‖𝐿𝑞(Ω,𝑑σ) ≤ 𝐶 ‖𝐿φ‖𝐿1(Ω,𝑑𝑥), ∀φ ∈ 𝐶2
0(Ω), 𝐿φ ≥ 0. (4.4)

It will be more convenient, as it often happens in the end-point case 𝑝 = 1, to replace
(4.3) with a similar inequality for measures ν ∈ ℳ+(Ω) in place of 𝐿1(Ω, 𝑑σ),

‖𝐺ν‖𝐿𝑞(Ω,𝑑σ) ≤ 𝐶 ‖ν‖, ∀ν ∈ ℳ+(Ω), (4.5)

where ‖ν‖ = ν(Ω). Clearly, (4.5)=⇒(4.3) if we set 𝑑ν = |𝑓 | 𝑑σ. The converse is also true
in many instances.

The following theorem demonstrates that a positive solution 𝑢 ∈ 𝐿𝑞(Ω,σ) to (4.1)
exists if and only if (4.5) holds. The same condition characterizes the existence of a positive
supersolution 𝑢 ∈ 𝐿𝑞(Ω,σ) such that

𝑢 ≥ 𝐺(𝑢𝑞σ), 0 < 𝑢 < +∞ 𝑑σ− a.e. in Ω. (4.6)

Theorem 4.1. Let σ ∈ ℳ+(Ω) and 0 < 𝑞 < 1. Suppose 𝐺 is a lower semicontinuous,
quasi-symmetric kernel which satisfies the weak maximum principle. Then the following
statements are equivalent:

1) There exists a positive constant 𝐶 = 𝐶(σ, 𝐺) such that (4.5) holds.
2) There exists a supersolution 𝑢 ∈ 𝐿𝑞(Ω, 𝑑σ) such that (4.6) holds.
3) There exists a solution 𝑢 ∈ 𝐿𝑞(Ω, 𝑑σ) to (4.1).

This theorem is proved in [23] for more general non-negative kernels under the ad-
ditional non-degeneracy assumption on the kernel 𝐺, which is in fact necessary for the
existence of a positive solution. Non-degeneracy of 𝐺 is not needed for the existence of a
non-trivial positive super-solution.

The next theorem gives some necessary and also close sufficient conditions for (4.5)
to hold.
Theorem 4.2. Let σ ∈ ℳ+(Ω), and 0 < 𝑞 < 1. Suppose 𝐺 is a quasi-symmetric,
non-degenerate kernel which satisfies the weak maximum principle.

1) If (4.5) holds, then 𝐺σ ∈ 𝐿
𝑞

1−𝑞 (Ω,σ).

2) If 𝐺σ ∈ 𝐿
𝑞

1−𝑞
,1(Ω,σ), then (4.5) holds.

Here 𝐿𝑠,1(Ω,σ) is the corresponding Lorentz space (see [26]).
It is shown in [23] that, without the assumption that 𝐺 satisfies the weak maximum

principle, the condition ∫︁
Ω

(𝐺σ)𝑠𝑑σ < ∞ (4.7)

with 𝑠 = 𝑞
1−𝑞

is necessary for the existence of a (super)solution 𝑢 ∈ 𝐿𝑞(Ω,σ) to (4.1) only
if 𝑞 ∈ (0, 𝑞0], where

𝑞0 =

√
5− 1

2
= 0.61 . . .

26 I.E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations



МАТЕМАТИКА

denotes the conjugate golden ratio. For general measures σ, the existence of a positive
solution 𝑢 ∈ 𝐿𝑞(Ω,σ) does not guarantee that (4.7) holds if 𝑞 ∈ (𝑞0, 1), or 𝑠 ̸= 𝑞

1−𝑞
for all

𝑞 ∈ (0, 1), even for symmetric positive kernels 𝐺.
Another characterization of the strong type inequality (4.5) can be deduced from Mau-

rey’s results [21]: it is equivalent to the existence of a nonnegative function 𝐹 ∈ 𝐿1(Ω,σ)
which satisfies

sup
𝑦∈Ω

∫︁
Ω

𝐺(𝑥, 𝑦)𝐹 (𝑥)1−
1
𝑞 𝑑σ(𝑥) < +∞.

This is a dual reformulation of (4.5), which does not require 𝐺 to satisfy the weak maximum
principle. In the discrete case where Ω consists of a finite number of points, it represents
the duality of the two basic concave programming problems (see [1, Sec. 5.7]).

We also give in [23; 25; 27] explicit characterizations of the weak type (1, 𝑞)-inequality

‖𝐺ν‖𝐿𝑞,∞(Ω,𝑑σ) ≤ 𝐶‖ν‖, for all ν ∈ ℳ+(Ω), (4.8)

for any 𝑞 > 0, in terms of energy estimates, as well as capacities.
In [23], we demonstrate how to remove the extra assumption imposed in Theorem 4.1

that a (super)solution 𝑢 ∈ 𝐿𝑞(Ω,σ) globally. We prove the following theorem where we
only assume that 𝑢 ∈ 𝐿𝑞

loc(σ), or equivalently, 0 < 𝑢 < +∞ 𝑑σ-a.e., provided the kernel
𝐺 satisfies a weak form of the complete maximum principle, or alternatively if 𝐺 is a
quasi-metric kernel (see, e.g., [11; 18; 23]).

The weak form (with constant b ≥ 1) of the complete comparison principle, also called
the domination principle, says the following:

𝐺µ(𝑥) ≤ 𝑣(𝑥) on supp (µ), 𝐺µ < +∞ 𝑑µ− a.e. =⇒ 𝐺µ(𝑥) ≤ b 𝑣(𝑥) on Ω,

for any positive measure µ and positive superharmonic function 𝑣.
With a special function 𝑚 satisfying 0 < 𝑚 < +∞ 𝑑σ-a.e., known as a modifier

[11; 18], we can modify the kernel 𝐺, so that the modified kernel

𝐾(𝑥, 𝑦) =
𝐺(𝑥, 𝑦)

𝑚(𝑥)𝑚(𝑦)
, 𝑥, 𝑦 ∈ Ω, (4.9)

satisfies the weak maximum principle (2.11). This makes it possible to apply Theorem 4.1
with 𝐾 in place of 𝐺, and consider 𝑢 ∈ 𝐿𝑞

loc(Ω,σ). A typical modifier that works for general
kernels 𝐺 which satisfy the complete maximum principle is given by

𝑚(𝑥) = min{1, 𝐺(𝑥, 𝑥0)}, 𝑥 ∈ Ω, (4.10)

where 𝑥0 is a fixed pole in Ω [19].
We say that 𝐺 is a quasimetric kernel with quasimetric constant κ > 0 provided

𝐺 is symmetric and 𝑑(𝑥, 𝑦) := 1
𝐺(𝑥,𝑦)

satisfies the quasimetric triangle inequality with
quasimetric constant κ, i.e.,

𝑑(𝑥, 𝑦) ≤ κ[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)], (4.11)

for any 𝑥, 𝑦, 𝑧 ∈ Ω. Here 𝑑(𝑥, 𝑦) : Ω× Ω → [0,+∞).
The kernel 𝐺 is quasimetrically modifiable with constant κ if there exists a modifier

𝑚 such that

𝐾(𝑥, 𝑦) =
𝐺(𝑥, 𝑦)

𝑚(𝑥)𝑚(𝑦)
(4.12)

is a quasimetric kernel with quasimetric constant κ.

Математ. физика и компьютер. моделирование. 2017. T. 20. № 3 27



МАТЕМАТИКА

Theorem 4.3. Let σ ∈ ℳ+(Ω) and 0 < 𝑞 < 1. Suppose 𝐺 is a quasi-symmetric positive
kernel, continuous in the extended sense on Ω×Ω, which either (a) satisfies the complete
maximum principle, or (b) is quasi-metrically modifiable. Then the following statements
are equivalent:

1) There exists a positive constant 𝐶 such that the weighted norm inequality

‖𝐺ν‖𝐿𝑞(𝑚𝑑σ) ≤ 𝐶

∫︁
Ω

𝑚𝑑ν, for all ν ∈ ℳ+(Ω), (4.13)

holds, where the modifier 𝑚(𝑥) is given by (4.10) for some 𝑥0 ∈ Ω.

2) There exists a positive (super) solution 𝑢 to (4.1) such that 𝑢 ∈ 𝐿𝑞
loc(Ω,σ) (or

equivalently 0 < 𝑢 < +∞ 𝑑σ-a.e.)

Theorem 4.3 yields a characterization of the existence of weak solutions 𝑢 ∈ 𝐿𝑞
loc(Ω,σ)

to the fractional Laplacian equation (1.5) in general domains Ω with positive Green’s function
𝐺 for 0 < α ≤ 2, or the entire space R𝑛, or balls, or half-spaces in R𝑛, for 0 < α < 𝑛
(quasi-metric kernels 𝐺) as discussed in the introduction. In the classical case α = 2, such
solutions are the so-called very weak solutions for bounded 𝐶2-domains Ω (see, e.g., [20]).

In the case Ω = R𝑛, an alternative criterion for the existence of weak solutions 𝑢 ∈
∈ 𝐿𝑞

loc(R𝑛,σ) to the fractional Laplacian equation (3.2) based on localization of (4.5) is
discussed in Sec. 3 above.

5. Higher integrability of solutions

Under the assumptions on the kernel 𝐺 imposed at the beginning of Sec. 4, let us
consider conditions on σ which ensure the existence of solutions 𝑢 ∈ 𝐿𝑟(Ω,σ) with 𝑟 > 0
to the sublinear integral equation (4.1). In this case, a simple necessary and sufficient
condition in terms of the energy (4.7) was obtained in [27]. In particular, these results were
used in [24] to establish conditions for the existence of solutions 𝑢 ∈ 𝐿𝑟(Ω, 𝑑𝑥) (now with
respect to Lebesgue measure) to the fractional Laplacian equation (1.5) in a general domain
Ω with positive Green’s function 𝐺, and also 𝑊 1,𝑝(Ω) solutions to divergence form sublinear
elliptic equations (1.3). These results are discussed in Sec. 6 below.

The following theorem (see [27]) characterizes the existence of solutions 𝑢 ∈ 𝐿𝑟(Ω,σ)
for 𝑟 > 𝑞, along with related weighted norm inequalities

‖𝐺(𝑓𝑑σ)‖𝐿𝑟(Ω,σ) ≤ 𝐶 ‖𝑓‖𝐿𝑝(Ω,σ), ∀𝑓 ∈ 𝐿𝑝(Ω,σ). (5.1)

Theorem 5.1. Let σ ∈ ℳ+(Ω). Suppose 𝐺 is a positive, lower semicontinuous, quasi-
symmetric kernel on Ω which satisfies the weak maximum principle.

(i) If 1 < 𝑝 < +∞ and 0 < 𝑟 < 𝑝, then (5.1) holds if and only if∫︁
Ω

(𝐺σ)
𝑝𝑟
𝑝−𝑟 𝑑σ < +∞. (5.2)

(ii) If 0 < 𝑞 < 1 and 𝑞 < 𝑟 < ∞, then there exists a positive (super) solution 𝑢 ∈
∈ 𝐿𝑟(Ω, 𝑑σ) to (4.1) if and only if (5.1) holds with 𝑝 = 𝑟

𝑞
, or equivalently by statement (i),∫︁

Ω

(𝐺σ)
𝑟

1−𝑞 𝑑σ < +∞. (5.3)
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Remark 5.2. We observe that the “if” parts of statements (i) and (ii) of Theorem 5.1 fail if
𝑝 = 1, and 𝑟 = 𝑞, respectively. The “only if” parts hold for all 0 < 𝑟 < 𝑝 in statement (i),
and 𝑟 > 0 in statement (ii).

Remark 5.3. It is known that inequality (5.1) with 𝑝 = 𝑟
𝑞
≥ 1 in the case 0 < 𝑞 < 1 yields

the existence of a positive (super) solution 𝑢 ∈ 𝐿𝑟(Ω,σ) for (4.1). This statement follows
from a lemma due to Gagliardo [14], and does not require 𝐺 to be quasi-symmetric or to
satisfy the weak maximum principle. However, the converse statement fails without the
weak maximum principle (see [23] in the case 𝑟 = 𝑞).

Remark 5.4. Without the assumption that 𝐺 satisfies the weak maximum principle, the
“only if” parts of statement (i) (with 𝑝 = 𝑟

𝑞
≥ 1) and statement (ii) (with 𝑟 ≥ 𝑞) of Theorem

5.1 hold only for 0 < 𝑟 ≤ 1 − 𝑞2; see [27]. The case 𝑟 = 𝑞 when 0 < 𝑞 < 𝑞0 =
√
5−1
2

is
discussed above.

6. Positive solutions in 𝑊 1,𝑝(Ω) and 𝐿𝑟(Ω)

In this section, we present sharp conditions on the coefficient σ which ensure the
existence a positive weak solution 𝑢 ∈ 𝑊 1,𝑝(Ω) or 𝑢 ∈ 𝐿𝑟(Ω,σ) to the sublinear elliptic
Dirichlet problem {︃

−div(𝒜∇𝑢) = σ𝑢𝑞, 𝑢 > 0 in Ω,

𝑢 = 0 on 𝜕Ω,
(6.1)

where 0 < 𝑞 < 1, and σ is a locally integrable function, or measure, in a domain Ω ⊆ R𝑛 with
nonnegative Green’s function 𝐺 associated with the uniformly elliptic operator −div(𝒜∇·),
for a symmetric matrix 𝒜 ∈ 𝐿∞(Ω)𝑛×𝑛. Some of these results obtained in [24] hold for
analogous fractional Laplacian equations (1.5) in domains Ω with positive Green’s function.

More generally, for a lower semicontinuous kernel 𝐺 : Ω × Ω → (0,+∞], where Ω ⊆
⊆ R𝑛, we denote by

𝐺(𝑓 𝑑σ)(𝑥) =

∫︁
Ω

𝐺(𝑥, 𝑦) 𝑓(𝑦) 𝑑σ(𝑦), 𝑥 ∈ Ω,

the corresponding integral operator, where σ ∈ ℳ+(Ω), the class of positive locally finite
Borel measures in Ω.

We study positive solutions 𝑢 ∈ 𝐿𝑟(Ω, 𝑑σ), as well as 𝑢 ∈ 𝐿𝑟(Ω, 𝑑𝑥), for the integral
equation

𝑢 = 𝐺(𝑢𝑞𝑑σ), 0 < 𝑢 < +∞ 𝑑σ− a.e. in Ω, (6.2)

where 0 < 𝑞 < 1. If 𝐺 is Green’s kernel associated with the Laplacian in a domain Ω ⊆ R𝑛,
then (6.2) is equivalent to the sublinear elliptic boundary value problem (6.1) (see [23]).

As above, we assume that the kernel 𝐺 of the integral operator 𝐺 is lower semicontin-
uous, quasi-symmetric, and satisfies a weak maximum principle. In Theorem 6.4 below an
additional assumption is imposed on 𝐺,

𝐺(𝑥, 𝑦) ≤ 𝐶

|𝑥− 𝑦|𝑛−α
, 𝑥, 𝑦 ∈ Ω, (6.3)

for 0 < α < 𝑛; here 𝐶 is a positive constant which does not depend on 𝑥, 𝑦.
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Such restrictions are satisfied by the Green kernel associated with many elliptic oper-
ators, including the fractional Laplacian (−Δ)

α
2 and 𝒜-Laplacian (with α = 2) in a domain

Ω ⊆ R𝑛.
The following theorems and corollaries are proved in [24].

Theorem 6.1. Let σ ∈ ℳ+(Ω), where Ω ⊆ R𝑛 (𝑛 ≥ 1) is a domain with a positive
Green’s function 𝐺 associated with −div(𝒜∇·). Let 0 < 𝑞 < 1 and γ > 0. Then there
exists a positive solution 𝑢 to (6.1) such that∫︁

Ω

|∇𝑢|2𝑢γ−1 𝑑𝑥 < ∞ (6.4)

if and only if ∫︁
Ω

(𝐺σ)
γ+𝑞
1−𝑞 𝑑σ < +∞. (6.5)

In particular, in the case γ = 1, the condition∫︁
Ω

(𝐺σ)
1+𝑞
1−𝑞 𝑑σ < +∞ (6.6)

is necessary and sufficient for the existence of a positive solution 𝑢 ∈ 𝑊 1,2
0 (Ω) to (6.1).

Theorem 6.1 yields sufficient conditions for 𝑢 ∈ 𝑊 1,𝑝
0 (Ω) when 𝑛

𝑛−1
< 𝑝 < 2. Here

𝑊 1,𝑝
0 (Ω) stands for the homogeneous Sobolev space defined as the closure of 𝐶∞

0 (Ω) func-
tions in the norm

‖𝑢‖𝑊 1,𝑝(Ω) =
(︁ ∫︁

Ω

|∇𝑢|𝑝𝑑𝑥
)︁ 1

𝑝
.

Letting 𝑝 = 𝑛(1+γ)
𝑛−1+γ

with 0 < γ < 1 in Theorem 6.1, we obtain the following corollary.
Corollary 6.2. Under the assumptions of Theorem 6.1, suppose that 𝑛

𝑛−1
< 𝑝 < 2 and

𝑛 ≥ 3. If ∫︁
Ω

(𝐺σ)
𝑝(𝑛−2)

(1−𝑞)(𝑛−𝑝)
−1𝑑σ < +∞, (6.7)

then there exists a positive solution 𝑢 ∈ 𝑊 1,𝑝
0 (Ω) to (6.1).

Corollary 6.3. Under the assumptions of Theorem 6.1, suppose σ ∈ 𝐿𝑠(Ω), where 𝑛
𝑛−𝑞(𝑛−2)

<

< 𝑠 ≤ 2𝑛
𝑛+2−𝑞(𝑛−2)

. Then there exists a positive solution 𝑢 ∈ 𝑊 1,𝑝
0 (Ω)∩𝐿𝑟(Ω) to (6.1) with

𝑝 = 𝑛(1−𝑞)𝑠
𝑛−𝑠(1+𝑞)

and 𝑟 = 𝑛(1−𝑞)𝑠
𝑛−2𝑠

.

In the following theorem we give conditions for the existence of positive solutions
𝑢 ∈ 𝐿𝑟(Ω, 𝑑𝑥) for more general kernels 𝐺.
Theorem 6.4. Let Ω ⊆ R𝑛 (𝑛 ≥ 1), and σ ∈ ℳ+(Ω). Let 0 < 𝑞 < 1. Suppose 𝐺 is a
positive, lower semicontinuous kernel on Ω × Ω which is quasi-symmetric and satisfies
the weak maximum principle.

(i) If there exists a solution 𝑢 ∈ 𝐿𝑟(Ω, 𝑑𝑥), 𝑟 > 0, to (6.2), then∫︁
Ω

(𝐺σ)
𝑟

1−𝑞 𝑑𝑥 < +∞. (6.8)

(ii) Suppose additionally that 𝐺 satisfies condition (6.3) for some 0 < α < 𝑛. If
𝑛

𝑛−α < 𝑟 < ∞ and ∫︁
Ω

(𝐺σ)
𝑟(𝑛−α)
(1−𝑞)𝑛

−1𝑑σ < +∞, (6.9)
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then there exists a positive solution 𝑢 ∈ 𝐿𝑟(Ω, 𝑑𝑥) to (6.2).
Corollary 6.5. Under the assumptions of Theorem 6.4, suppose that σ ∈ 𝐿𝑠(Ω, 𝑑𝑥), where

𝑛
𝑛−𝑞(𝑛−α) < 𝑠 < 𝑛

α
. Then there exists a positive solution 𝑢 ∈ 𝐿𝑟(Ω, 𝑑𝑥) to (6.2), where

𝑟 = 𝑛(1−𝑞)𝑠
𝑛−α𝑠 .
Corollaries 6.3 and 6.5 for bounded domains Ω were obtained earlier by Boccardo and

Orsina [4]. We observe that the restrictions on 𝑠 in these corollaries, and consequently on
the exponents γ, 𝑝 and 𝑟 in Theorem 6.1, Theorem 6.4, and Corollary 6.2, are sharp.

There are also weak-type analogues of these results for Marcinkiewicz spaces 𝐿𝑟,∞ as
in [5], based on the corresponding weak-type weighted norm inequalities (see [23; 25; 27]).

The proof of Theorem 6.1 in [24] makes use of the weighted norm inequality

‖𝐺(𝑓 𝑑σ)‖𝐿𝑟(Ω,𝑑σ) ≤ 𝐶 ‖𝑓‖𝐿𝑠(Ω,𝑑σ), ∀𝑓 ∈ 𝐿𝑠(Ω, 𝑑σ), (6.10)

for integral operators 𝐺 in the case 1 < 𝑟 < 𝑠 < +∞ considered in Sec. 3.
The proof of Theorem 6.4 uses both (6.10) and a similar weighted norm inequality with

Lebesgue measure on the left-hand side,

‖𝐺(𝑓 𝑑σ)‖𝐿𝑟(Ω,𝑑𝑥) ≤ 𝐶 ‖𝑓‖𝐿𝑠(Ω,𝑑σ), ∀𝑓 ∈ 𝐿𝑠(Ω, 𝑑σ), (6.11)

for 1 < 𝑟 < ∞, 1 < 𝑠 < +∞. Such inequalities in the equivalent dual form

‖𝐺𝑓‖𝐿𝑠′ (Ω,𝑑σ) ≤ 𝐶 ‖𝑓‖𝐿𝑟′ (Ω,𝑑𝑥), ∀𝑓 ∈ 𝐿𝑟′(Ω, 𝑑𝑥), (6.12)

were characterized in the special case where Ω = R𝑛 and 𝐺 = (−Δ)−
α
2 is the Riesz potential

of order α ∈ (0, 𝑛), by Maz’ya for 𝑟 ≥ 𝑠 ≥ 1, and Maz’ya and Netrusov for 1 < 𝑟 < 𝑠, in
terms of Sobolev capacities, and later by Cascante, Ortega and the author in terms of Wolff
potentials (see [7; 22]).

In [24], we employ an alternative characterization in terms of Green’s potentials 𝐺σ as
in Theorem 5.1 above, which is sufficient for both (6.10) and (6.11) simultaneously.
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20. Marcus M., Véron L. Nonlinear Second Order Elliptic Equations Involving Measures.
Berlin; Boston, Walter de Gruyter, 2014. 248 p.
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СУБЛИНЕЙНЫХ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ
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University of Missouri
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Аннотация. В работе представлен обзор последних результатов о поло-
жительных решениях эллиптических уравнений типа −𝐿𝑢 + 𝑉 𝑢𝑞 = 𝑓 , где
𝐿 — эллиптический оператор в дивергентной форме, 0 < 𝑞 < 1, 𝑓 ≥ 0 и 𝑉 —
функция, которая может изменять знак, в области Ω ⊆ R𝑛 или на весовом
римановом многообразии с положительной функцией Грина 𝐺. Обсуждаются
вопросы существования решений, глобальные нижние и верхние поточечные
оценки классических и слабых решений 𝑢, а также условия, обеспечивающие
𝑢 ∈ 𝐿𝑟(Ω) или 𝑢 ∈ 𝑊 1,𝑝(Ω).

Некоторые из этих результатов применимы к однородным сублинейным
интегральным уравнениям 𝑢 = 𝐺(𝑢𝑞𝑑σ) in Ω, где 0 < 𝑞 < 1, а σ = −𝑉 —
положительная локально конечная борелевская мера в Ω. Здесь 𝐺(𝑓 𝑑σ)(𝑥) =
=
∫︀
Ω𝐺(𝑥, 𝑦), 𝑓(𝑦) 𝑑σ(𝑦) — интегральный оператор с положительным (квази)

симметричным ядром 𝐺 на Ω× Ω, который удовлетворяет слабому принципу
максимума. Результаты распространяются на положительные, возможно син-
гулярные, решения сублинейных уравнений, содержащих дробный лапласиан

(−Δ)
α
2 𝑢 = σ𝑢𝑞, 𝑢 ≥ 0 в Ω,

где 0 < 𝑞 < 1, 0 < α < 𝑛 и 𝑢 = 0 в Ω𝑐 и на бесконечности в областях Ω ⊆ R𝑛

с положительной функцией Грина 𝐺.

Ключевые слова: сублинейные эллиптические уравнения, функция Гри-
на, слабый принцип максимума, дробный лапласиан.
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