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Abstract. We consider the Laplacian and its fractional powers of order less
than one on the complement R?\ ¥ of a given compact set ¥ C R of zero
Lebesgue measure. Depending on the size of 3, the operator under consideration,
equipped with the smooth compactly supported functions on R¢\ ¥, may or may
not be essentially seli-ajoint. We survey well-known descriptions for the critical
size of X in terms of capacities and Hausdorff measures. In addition, we collect
some known results for certain two-parameter stochastic processes. What we
finally want to point out is, that, although a priori essential self-adjointness is not
a notion directly related to classical probability, it admits a characterization via
Kakutani-type theorems for such processes.
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Introduction

In this note we would like to point out an interesting connection between some tra-
ditional and well-studied notions in analysis and an interesting, but perhaps slightly less
known area in probability theory. More precisely, we outline the relation between unique-
ness questions for self-adjoint extensions of the Laplacian and its powers on the one hand
and hitting probabilities for certain two-parameter stochastic processes on the other. Al-
though both, the analytic part and the probabilistic part of the results stated below are
well-established, it seems that the existing literature did never merge these two different
aspects.

Recall that if a symmetric operator in a Hilbert space, considered together with a
given dense initial domain, has a unique self-adjoint extension, then it is called essentially
self-adjoint. The question of essential self-adjointness has strong physical relevance, because
the evolution of a quantum system is described in terms of a unitary group, the generator
of a unitary group is necessarily self-adjoint, and different self-adjoint operators determine
different unitary groups, i.e. different physical dynamics. See for instance [37, Section X.1].
Self-adjointness, and therefore also essential self-adjointness, are notions originating from
quantum mechanics.

A related notion of uniqueness comes up in probability theory, more precisely, in the
theory of Markov semigroups. Recall that any non-positive definite seli-adjoint operator L
on a Hilbert space H is uniquely associated with a non-negative definite closed and densely
defined symmetric bilinear form @ on H by Q(u,v) = — (u, Lv)y, [37, Section VIIL.6],
where (-,-),; denotes the scalar product in H and w and v are arbitrary elements of the
domain of @ and the domain of L, respectively. Now assume that H is an L?-space of
real-valued (classes of) functions. Then, if for any u from the domain of @ also |u] is in the
domain of @ and we have Q(|ul, |u|) < Q(u,w), the form @ is said to satisly the Markov
property. In this case it is called a Dirichlet form, and L is the infinitesimal generator of a
uniquely determined strongly continuous semigroup of symmetric Markov operators on H,
sometimes also called a Markov generator, [7;9;15]. We say that a non-positive definite
symmetric operator in an L2-space H, together with a given dense initial domain, is Markov
unique, if it has a unique self-adjoint extension in H that generates a Markov semigroup.
Different Markov generators determine different Markov semigroups and (disregarding for
a moment important issues of construction and regularity) this means that they define
different Markov processes. So the notion of Markov uniqueness belongs to probability
theory. It has strong relevance in the context of classical mechanics and statistical physics.

For a non-positive definite densely defined symmetric operator on an L?-space essen-
tial seli-adjointness implies Markov uniqueness, but the converse implication is false, see
Examples 1 and 2 below or [39]. Even if an operator is Markov unique, it may still have
other self-adjoint extensions that do not generate Markov semigroups. It is certainly fair
to say that a priori the notion of essential self-adjointness is a not a probabilistic notion.
However, and this is what we would like to point out here, in certain situations essential
self-adjointness can still be characterized in terms of classical probability.

We consider specific exterior boundary value problems in R?. It is well-known that
the Laplacian A, endowed with the initial domain C§°(R?) of smooth compactly supported
functions on R? has a unique self-adjoint extension in L?(R¢). This unique self-adjoint
extension is given by (A, H?(R%)), where given o« > 0, the symbol H%(R?) denotes the
Bessel potential space of order «, see Section 1 below. Similarly, the fractional Laplacians
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—(—A)*? of order o > 0, endowed with the domain C$°(R?), have unique self-adjoint
extensions, respectively, namely (—(—A)*2, H¥(R?)). In the present note we focus on the
cases 0 < ¢ < 2.

Given a compact set X C RY of zero d-dimensional Lebesgue measure, we denote its
complement by N := R4\ ¥. For any 0 < « < 2 the operator (—(—A)%2 C°(N)) is
non-positive definite and symmetric on L2(N) = L?(R?%). We are interested in conditions on
the size of ¥ so that (—(—A)%2,Cg°(N)) is essentially seli-adjoint. Of course one possible
self-adjoint extension is the global operator (—(—A)*2 H*(R%)), which ’ignores’ . If ¥ is
‘sufficiently small’, it will not be seen, and there is no other self-adjoint extension. If X is
'too big’, it will registered as a boundary, leading to a self-adjoint extension different from
the global one.

As mentioned, the analytic background of this problem is classical and can for instance
be found in the textbooks [1;15;33]. See in particular [33, Sections 13.3 and 13.4]. For
integer powers of the Laplacian on R? a description of the critical size of ¥ in terms of
capacities and Hausdorff measures had been given in [3, Section 10], and to our knowledge
this was the first reference that gave such a characterization of essential self-adjointness. For
fractional powers a characterization of essential self-adjointness for the case ¥ = {0} follows
from [14, Theorem 1.1]. For more general compact sets > such descriptions do not seem to
exist in written form. A probabilistic description for the critical size of X, which we could
not find anywhere in the existing literature, can be given in terms of suitable two-parameter
processes as for instance studied in [20;25;27;28]. In essence, these descriptions are
straightforward applications of Kakutani type theorems for multiparameter processes, see
for instance [25, Chapter 11, Theorems 3.1.1 and 4.1.1]. In fact, using processes with more
than two parameters one could even extend this type of results to fractional Laplacians of
arbitrary order. A philosophically related idea, namely a connection between Riesz capacities
and the hitting behaviour of certain one-parameter Gaussian processes (that are not Markov
processes except in the Brownian case) had already been studied in [23]. Taking into
consideration also processes with a more general state space, another idea is to test the size
of small sets with one-parameter processes taking values in the space of finite measures over
R?, see for instance [12;35;36]. Interestingly, they exhibit exactly the hitting behaviour
needed to characterize the essential self-adjointness of the Laplacian, [36, Theorem II1.5.2].

We would like to announce related forthcoming results for Laplacians on complete
Riemannian manifolds, [19]. An analytic description of essential self-adjointness for the
Laplacian via capacities reads as in the Euclidean case, instead of traditional arguments for
Euclidean spaces based on convolutions, [1], our proof uses the regularity theory for the
Laplacian on manifolds, [17], and basic estimates on the gradients of resolvent densities,
[4, Section 4.2]. To proceed to a geometric description we use asymptotics of the resolvent
densities, they are basically the same as those for Green functions, see for instance [4,
Section 4.2], [16, Section 4.2] or [29, Section 4.2]. For a probabilistic description we
restrict ourselves, at least for the time being, to the case of Lie groups. In this case we can
still work with relatively simple two-parameter processes and use the potential developed in
[20; 21] to connect them to capacities and essential self-adjointness. In the case of general
complete Riemannian manifolds one first has to raise the quite non-trivial question what
could be suitable two-parameter processes taking values in manifolds. It might even turn
out that it is more natural to use measure-valued processes.

A subsequent idea to be addressed in the near future concerns details of the relationship
between stochastic processes and specific boundary value problems. For many interesting
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cases it is well understood how boundary value problems (such as Dirichlet, Neumann or
mixed), encoded in the choice of domain for the associated Dirichlet form, determine the
behaviour of associated one-parameter Markov processes. It would be interesting to see
whether, and if yes, in what sense, the behaviour of related two-parameter processes can
reflect given boundary value problems for the Laplacian, encoded in the choice of its domain
as a self-adjoint operator.

In the next section we collect some preliminaries. In Section 2 we discuss analytic
characterizations of Markov uniqueness and essential seli-adjointness for fractional Lapla-
cians. In Section 3 we provide geometric descriptions, and in Section 4 we give probabilistic
characterizations in terms of hitting probabilities for two-parameter processes.

Acknowledgements

We would like to thank Professors Masayoshi Takeda, Sergio Albeverio and Hiroaki
Aikawa for helpful and inspiring discussions on the subject. We would like to thank Profes-
sors Mouhamed Moustapha Fall and Veronical Felli for kindly pointing out their paper [14].

1. Bessel potential spaces, capacities and kernels

We provide some preliminaries on function spaces, fractional Laplacians, related capac-
ities and kernels. Our exposition mainly follows [1, Chapters 1-3]. Given & > 0 we define
the Bessel potential space of order o« by

H*(RY) = {u € LA(RY) : (1+ |£2)*20 € L?(Rd)} ,
where u — @ denotes the Fourier transform of u. Together with the norm

el o ey = [0+ 18720

L2(R9)

it becomes a Hilbert space. See for instance [1;33;40;41]. Using the fact that

~Af = (|g]*f)

for any f € S(RY), where S(R?) denotes the space of Schwartz functions on R? and u + @
the inverse Fourier transform, we can easily see that (A, C°(R?)) is essentially self-adjoint
on L?(R?%) with the unique self-adjoint extension (A, H*(R%)), see for instance [10, Theorem
3.5.3]. For « > 0 we can define the fractional Laplacians —(—A)*? of order /2 in terms
of Fourier transforms by

(=A)2f = (|g*f)".
Again it is not difficult to show that (—A)*/?, endowed with the domain Cg°(R?), has a
unique self-adjoint extension, namely ((—A)%2, H*(R%)). One can proceed similarly as in

[10, Theorem 3.5.3], see also [10, Theorem 1.2.7 and Lemma 1.3.1].
Given o > 0, we write

Yoo = (14 [E]) 7)Y (1)

to denote the Bessel kernel of order « and Gof := v * f to denote the Bessel potential
operator G, of order «, which defines a bijection from S(R?) into itself and also a bounded
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linear operator G, : L?(R?) — L?*(RY). In both interpretations we have G, = (I — A)~%/2,
The image G,f of a measurable function f : R? — [0,+oc] is a lower semicontinuous
nonnegative function on RY, see [1, Proposition 2.3.2]. This implies that for any f € Li(Rd),
where the latter symbol denotes the cone of nonnegative elements in L2(Rd), its image Gu f
is a [0, +0c]-valued function on R?, i.e. defined for any x € R%. We can therefore define the
«, 2-capacity Cap, ,(E) of a set E C R? by

Capyo(B) = nf {||f [} : £ € L2(RY) and Gof(x) > 1 for all w € B},

with the convention that Cap, ,(E) = +00 if no such f exists, see [1, Definition 2.3.3].
There is another, 'more algebraic’ definition of a «,2-capacity. For a compact set
K C R?, define

Capg o(K) = inf{H(pHiIa(Rd) @ € C°(RY) such that @(z) =1
for all z from a neighborhood of K'}. (2)

Exhausting open sets by compact ones and approximating arbitrary sets from outside by
open ones, this definition can be extended in a consistent manner to arbitrary subsets of R¢.
Now it is known that there exist constants c;, ¢, > 0 such that for any compact set K C R,
we have

€1 Capcx,Z(K) < Capixﬁ(K) < ¢ Capoc,2(K)7 (3)

see [32, Theorem 3.3] for integer o and [1, Section 2.7 and Corollary 3.3.4] or [2, Theorem
A] for general . We would like to remark that (3) is based on certain truncation results
for potentials. For 0 < o« < 1 the spaces H*(R?) are domains of Dirichlet forms so that
truncation properties are immediate from the Markov property. However, for & > 1 one
needs to invest additional arguments, see for instance [1, Sections 3.3, 3.5 and 3.7].

As before, let ot > 0. We say that a Radon measure w on R? has finite x-energy if

/ v[du < cl[v]| gu(gay  Tor all v € CG7(R).
Rd
For a measure u having finite o-energy we can find a function U*u € H*(R?) such that

(U, 0) pra ey = /dv du  for all v € S(RY). (4)
R

Using Fourier transforms this seen to be equivalent to requiring

o —

<<1 + ya|2)“ﬂ,@>L2(Rd) — i(o(=)  for all v € S(RY),

what implies that U = (1 + |&]*)"%fi in the sense of Schwartz distributions, and finally,
U = you * W

Note that by (1) we have
Y2 = Yo * Y- (5)
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We can deline the x-energy of u as

Eo(u) = » U dy,

and by (4) this can be seen to equal ||U°‘LL||§{“(R‘1). There is a dual definition of the o, 2-

capacity: For a compact set K C R? we have

K 2
1K) : W is a Radon measure on K} (6)
Eqo(n)

Capgo(K) = sup {

with the interpretation é := 0, see [1, Theorem 2.2.7].

We finally collect some well-known asymptotics of the Bessel kernels. For 0 < o« < d
we have

Yo ~ cd,(x|x|°‘_d as x| — 0 (7)

with a positive constant ¢, depending only on d and «, and for the limit case & = d,
Ya(z) ~ cq(—log|z]) as|z| =0 (8)
with a positive constant c; depending on only on d. Moreover, it is known that
Y« is continuous away from 0 and y(z) = O(e‘cm) as |z| — oo. 9)

By (1) we have y4(&) < |E|™* for all sufficiently large & € R In the case d < « we
therefore see that the Bessel kernel vy, is an element of L!(R?) and equals

ch(@—/RdeE, r € R% (10)

See [1, Sections 1.2.4 and 1.2.5].

2. Markov uniqueness, essential self-adjointness and capacities

Recall that 3 C R is a given compact set of zero Lebesgue measure and N := R4\ 3.
We first state a well-known known result on Markov uniqueness. Using the definition (2)
of capacities together with traditional approximation arguments, which we will formulate
below for the question of essential seli-adjointness, one can obtain the following.
Theorem 1. Let 0 < « < 2. The fractional Laplacian ((—A)%/2,C(N)) is Markov-
unique if and only if Cap,4(%) = 0.

A classical guiding example for the case o = 2 is the following, which will be comple-
mented for the cases 0 < o« < 2 in Section 3.
Example 1. Consider the case that ¥ = {0}. Then (A, C§°(NV)) is Markov unique if and
only if d > 2. See [39, p. 114].

We turn to essential self-adjointness. The following theorem provides a characterization
in term of the «, 2-capacity of X.
Theorem 2. Let 0 < o < 2. The fractional Laplacian ((—A)*? C*(N)) is essentially
self-adjoint if and only if Cap,,(¥) = 0.
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For the case « = 2 Theorem 2 is partially implied by [3, Theorems 10.3 and 10.5],
which also imply corresponding results for powers of the Laplacian of higher integer order.
In [19] we provide a version of Theorem 2 for the Laplacian (x = 2) on complete Riemannian
manifolds, generalizing earlier results given in [30, Theorem 3] and [8, Theoreme 1].

The following is a well-known guiding example for o = 2, for the case 0 < & < 2 see
Section 3.

Example 2. Consider the case that ¥ = {0}. Then (A, C§°(N)) is essentially self-adjoint if
and only if d > 4. See [39, p. 114] and [37, Theorem X.11, p. 161].

We formulate a proof of Theorem 2. Theorem 1 can be obtained by similar arguments.

Proof. Suppose that Cap,,(X) = 0. Let (£(®,dom £®) denote the closure in L*(R?)
of —(—=A)*? with initial domain C$°(N). Since clearly dom £ c H*(R?), it suffices
to show the converse inclusion. Given u € H*(R?), let (u,), C C5°(R?) be a sequence
approximating u in H*(R?). By (2) there is a sequence (vy), C C§°(N) such that v, — 0
in H*(R%) and for each k, v;, equals one on a neighborhood of . Set w,; := (1 — v},)uy, to
obtain functions wy € C§°(INV). Let n be fixed. It is easy to see that u,, — wy, = u,vEy — 0
in L?(R%) as k — oo. Because the graph norm of (—A)*/? provides an equivalent norm in
H*(R?), it now suffices to note that

(=A)2(uy, — wpi) = (—A)**(uv) — 0 in L*(RY) as k — oo. (11)
For any f,g € Cg°(R?) we can use the identity

—(=A)*2(fg) = 20(f,9) — f(=A)*2g — g(~D)**f (12)

to define the carré du champ T (f,g) of f and g associated with —(—A)%2, see for
instance [5, Section 1.4.2]. We have

|2, s < 1 ey Nl
for the second summand on the right hand side, and
. /2 . oc/2
lo=2072f) o < [ 2721, Nl

for the third. For the first summand on the right hand side of (12) we can use Cauchy —
Schwarz, [T (f, g)] < T (f, /2T (g, g)'/2, and since (—(—A)*2 C(R?)) also ex-
tends to a Feller generator on R? (see for instance [38]), we have ['®(f, f) € L>(R?), so

that
[r@(.9)]

<@ n)|| o ol -

L2(R%) Lo (R4)

oc/4g’

(—A)“/4g>L2(Rd) of g, clearly dominated by the square of the H*(R%)-norm of g. Con-
sidering (12) with w,, and vy in place of f and g and applying the preceding estimates, we
see (11). As a consequence, we see that H*(RY) C dom £,

Conversely, suppose that ((—A)%?2 C$°(N)) is essentially self-adjoint in L?(R?). Then
its unique self-adjoint extension must be ((—A)*?2 H¥(R?)). Let u € C§°(R?) be a function
that equals one on a neighborhood of ¥. Since C§°(R?) ¢ H%(R?) and by hypothesis C§°(N)
must be dense in H*(RY), we can find a sequence (u,), approximating u in H%(R?). The
functions e, := u —u, then are in C5°(RY), equal one on a neighborhood of ¥, and converge
to zero in H*(R?), so that Cap, () < lim, HenHH“(Rd = 0.

Here we have used that |I(®(g,g HLI(W) is nothing but the energy ((—A)
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Finally, we would like to mention known removability results for A. One says that a
compact set K C R? is removable (or a removable singularity) for A in L? if any solution u
of Au=0in U\ K for some bounded open neighborhood U of K such that u € L?(U \ K),
can be extended to a function w € L*(U) satisfying Au =0 in U. See [1, Definition 2.7.3].
By Corollary [1, 3.3.4] (see also [33, Section 13.4] and [3, Proposition 10.2]) a compact set
K C R%is removable for A in L? if and only if Cap,,(K) = 0.

Removability results for fractional Laplacians are for instance discussed in [22].

3. Riesz capacities and Hausdorif measures

In this section we consider some geometric descriptions for the critical size of X. For
the case of Markov uniqueness they have been discussed in many places. For the case of
essential self-adjointness of integer powers of the Laplacian they were already stated in [3].

We first give a quick review of Riesz energies and capacities. Given s > 0 and a Radon

measure p on RY, let
L= [ [ o=yl uldy)uian)
Rd JRd

denote the Riesz energy of order s of u. The Riesz energy of order zero of a Radon measure
1 on R? we define to be

o= [ [ (= Infe =) wldyude).

For a Borel set E C R? we can the define the Riesz capacity of order s > 0 of E by
Cap,(E) = [inf {I,(1) : u Borel probability measure on E}]~"

with the agreement that é := 0. See for instance [25, Appendix C].
Now suppose 0 < 2« < d and that K C R is compact. Then

Cap,o(K) >0 ifand only if ~ Cap,y 5, (K) > 0. (13)

To see this note that if there exists a Borel probability measure p on K with I;_o4(p) <
< 400, then by (9) and (7) respectively (8) we have F,(u) < +oo, and by (6) therefore
Capyo(K) > 0. Conversely, if the «,2-capacity of K is positive, we can find a nonzero
Radon measure p on K with Ey(p) < 400, so that again by (9) and (7) respectively (8)
the Borel probability measure ﬁ has finite Riesz energy of order d — 2c.

Consider the Dirac measure , with total mass one at the origin, it is the only possible

probability measure on the compact set {0}. If 2a < d then obviously I 24(80) = 400,
so that by (13) we have Cap,,({0}) = 0. On the other hand, for d < 2 identity (10)
implies that U%8g(z) = vau * 80(7) = Vau(z), * € RY, so that Ey(89) = vau(0) < +o00
and therefore Cap,,({0}) > 0. Similar arguments are valid with « in place of 2. This
produces fractional versions of Examples 1 and 2.
Example 3. Consider the case that 0 < « < 2 and ¥ = {0}. Then ((—A)*/2,Cg(N)) is
always Markov unique for d > 2. For d = 1 it is Markov unique if 0 < o« < 1 but not if
1 < a < 2. See also [6, Section 1.5, p. 63]. So a necessary and sufficient condition for
Markov uniqueness is d > «.
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Example 4. Consider the case that 0 < « < 2 and ¥ = {0}. Then ((—A)*2,C(N))
is always essentially self-adjoint for d > 4. For d < 3 it is essentially seli-adjoint if
0 < 20 < d but not if d < 2a¢ < 4. Therefore a necessary and sufficient condition for
essential self-adjointness is d > 2«.

As before let ¥ C R be compact and of zero Lebesgue measure and write N := R%\ ¥,
Using theorems of Frostman — Taylor type [25, Appendix C, Theorems 2.2.1 and 2.3.1],
see also [13;24;31;34], we can give another description of the critical size of X, now in
terms of its Hausdorif measure and dimension. Given s > 0, the symbol H?® denotes the
s-dimensional Hausdorff measure on R? [13;24;31; 34]. By dimy we denote the Hausdorif
dimension. Again we begin with a result on Markov uniqueness.

1. Let 0 < o« < 2 and suppose o < d.

(i) If H¥™*(Z) < +oo then ((—A)¥? C§°(N)) is Markov unique. This is true in
particular if o« < d and dimg ¥ < d — .

(i) If (=A)*?,C3°(N)) is Markov unique then dimy ¥ < d — o

For the essential self-adjointness we have the following result, it partially generalizes
[3, Theorem 10.3, Corollary 10.4 and Theorem 10.5]

2. Let 0 < o < 2 and suppose 2« < d.

(i) If HP72%(X) < +oo then ((—A)*?,C°(N)) is essentially self-adjoint. This is true
in particular if 2o < d and dimy > < d — 2.

(ii) If (—=A)*2,C3°(N)) is essentially self-adjoint then dimy ¥ < d — 2.

We provide some arguments for Corollary 2, it follows from Theorem 2. In a similar
manner one can deduce Corollary 1 from Theorem 1.

Proof. 1f 2a < d and H42%*(¥) < +4oo in Corollary 2 (i), then by Frostman — Taylor,
[25, Appendix C, Theorem 2.3.1], we have Cap, ,,(3) = 0, and by (13) therefore also
Capy o(X) = 0. If 200 = d and H°(X) < +o0, then ¥ must be a finite set of points, note that
HO is the counting measure. Since capacities are subadditive, we have Capy22(2) = 0 once
we know a single point has zero d/2,2-capacity. However, the only probability measure a
single point p € R? can carry is a Dirac point mass measure 5, with total mass one, and
clearly Io(,) = +00, so that Cap,({p}) = 0. By (13) this implies that Cap,,,({p}) =0,
as desired. Conversely, if we have 2« < d and Cap, 5(X) = 0 Corollary 2 (ii), then by (13)
Cap,_5,(X) = 0, and Frostman-Taylor implies that for any e > 0, H4~2*+¢(X2) = 0, showing
dimp 3 < d—2e. If 20 = d and Capg 5 5(>) = 0, then by (13) we have Cap,(X) = 0. It is
not difficult to see that this implies Cap,(X) = 0 for all ¢ > 0, and therefore dimy 3 = 0.

4. Additive processes and a probabilistic characterization

In this section we provide probabilistic characterizations of Markov uniqueness and
essential self-adjointness. We use the notation R, = [0, 4+00).

We are aiming only at results on hitting probabilities, so there is ambiguity what sort
of stochastic process to use. Potential theory suggests to use Markov processes, and due
to the group structure of R? a particularly simple choice is to use certain Lévy processes,
[6;38]. Recall that a Lévy process on R? is a stochastic process (Xt)ier,, modelled on
a probability space (2, F,P) and taking values in R that has independent and stationary
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increments, is stochastically continuous, is P-a.s. right-continuous with left limits (‘cadlag’)
and such that P(Xy, = 0) = 1. See for instance [38, Chapter I, Section 1, Definition 1.6].

Let (B;)icr, denote a Brownian motion on RY (starting at the origin), modelled on a
probability space (2, F,P), that is a Lévy process on R? with P-a.s. continuous paths and
such that for any ¢ > 0 and any Borel set A C R,

P(B, € A) — / p(t, )da,

A

where
El§

1
p(t,x) :Wexp <_2_t> s t>0, I'GRd

Alternatively, in terms of characteristic functions, a Brownian motion is a Lévy process on
R? satisfying
E[exp {i (£, Bi)}] = exp {—27'1|€]’} ¢ >0, £ e R™

More generally, given 0 < « < 2 let (Xt((x))te][{_,r denote an isotropic «-stable Lévy
process on RY, modelled on a probability space (2, F,P), that is a Lévy process on R?
satisfying

E [exp {z <a, X§“>>H — exp {—2*“/215]5]“} t>0, &€ R

Obviously for o« = 2 the process (Xlt(Q))teRJr is equal in law to a Brownian motion (B;)icr, .
For 0 < o < 2 an isotropic «-stable Lévy process can be obtained from a Brownian motion
by subordination, see [38, Chapter 6, in particular Example 30.6]. For general existence
results for Lévy processes see [6, Section 1.1, Theorem 1] or [38, Corollary 11.6].

To prepare the discussion of related two-parameter processes below, we collect some
properties. Let 0 < o < 2. By

T, f(z) = E[f (X" +2)], ¢>0, z € R,
we can define a strongly continuous contraction semigroup (Tt(“))t>0 of Markov operators
on L?(R%) (and on the space C,(R?) of continuous functions vanishing at infinity), they are

symmetric in L2(R?). Its infinitesimal generator (in both spaces) is —27%/2(—A)*/2 The
associated 1-resolvent operators R\® = (I + 2-%/2(—A)%/2)~1 satisly

R&f = / T dt,
0

they are bounded linear operators on L*(R?) (and on Cyso(R%)). The operators R\ admit
radially symmetric densities u(%, that is

RYf@) = | (@ —y)dy.

For 0 < o < d we have

arlz]*™ < uf () < cala|* (14)
whenever |z| is sufficiently small, where ¢; and ¢, are two positive constants. See for
instance [25, Section 10, Lemma 3.1.1 and 3.4.1].
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Versions of Kakutani’s theorem, [25, Section 10, Theorems 3.1.1 and 3.4.1], now allow
to use Brownian motions (in case o« = 2) or isotropic «-stable Lévy processes (in case
0 < o < 2) to characterize Markov uniqueness. As before, ¥ C R? is a compact set of zero
Lebesgue measure and N := R?\ X.

3. Let 0 < o« < 2 and assume d > «. The operator ((—A)*?,C3°(N)) is Markov unique
if and only if for any x ¢ ¥ we have

P(3 t € Ry such that X yre ) =0.

The main aim of the present note is to point out a similar characterization for essential
self-adjointness. Because their definition and structure is particularly simple, we will use
two-parameter additive stable processes to describe the critical size of ¥. Let 0 < o« < 2.
Given two independent isotropic o-stable Lévy processes (X (),cp, and (X(®),cg, on R?

we consider the process (Xt(“))teRi defined by

X = X0 X b= (4, 1,) € R, (15)

[t is called the two-parameter additive stable process if index «, see [25, Section 11.4.1].
In the case o« = 2 it is called the two-parameter additive Brownian motion, we also denote
it by (Bg)ter, , where

By = By, + Bi,, t=(t1,ts) € R%,

with two independent Brownian motions (B;)¢cr, and (Et)teR+ on RY. Additive stable pro-
cesses or, more generally, additive Lévy processes have been studied intensely in [25; 27; 28]
and follow up articles.

[t seems plausible that, as two processes are added, these two-parameter processes
move 'more actively’ than their one-parameter versions, so they should be able to hit smaller
sets with positive probability. This is indeed the case and can be used for our purpose. The
next satement is a simple application of known Kakutani-type theorems for two-parameter
processes, [25, Section 11, Theorem 4.1.1].

4. Let 0 < « < 2 and assume d > 2x. The operator ((—A)*/2,C(N)) is essentially
self-adjoint if and only if for any x ¢ 3. we have

P(3 t € R2 such that X\ + 1z € ¥) = 0.

Applying Corollary 4 with « = 2 and d > 4 we can conclude that a compact set
K C R? is removable for A in L? if and only if it is not hit by the additive Brownian motion
with positive probability.

We collect some notions and facts related to additive stable processes and then briefly
comment on the case d = 2« in Corollary 4 which is the only case not covered by [25,
Section 11, Proposition 4.1.1 and Theorem 4.1.1].

One can define a two-parameter family (7™ ). of bounded linear operators 7, on
L*(RY) (or Coo(RY)) by

T =TT, t = (t,1) - 0.
Here we write (t1,t2) > (s1,s2) il t1 > s1 and t5 > so. They satisly the semigroup property
TOT = 7% for all s, = 0 and also the strong limit relation

7;(0()](. - f = 07 f € Coo<Rd>7

sup

lim
t—0
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and, using the density of C,(R?) N L?(RY) in L?(R%), also for the L?(R%)-norm and f €
€ L*(RY). By the independence of the summands in (15) it is not difficult to see that

T 4(2) = P(X™ + 2 € A)

for all Borel sets A C R? and starting points 2 € R?. See for instance [20] or [25, Sections
11.1 and 11.2]. Mimicking the one-parameter case, on can introduce associated 1-resolvent

operators R(I“) by
RE @)= [ e T (),
R
Here, in accordance with the notation used above, we write 1 = (1, 1). Obviously
R(loc) _ Rgoc)Rgoc)7

and consequently the R\® are bounded and linear operators on L*(R%) (and Ca(R?)) and
admit the densities

uf = uf® wuf®, (16)

/ fly — y)dy.

We provide the arguments for the special case 2 = d in Corollary 4. By Giraud’s lemma, [4,

Chapter 4, Proposition 4.12], together with (14) and (16), the densities u(d/ ) are continuous
away from the origin and satisfy

that is

uf"? () < c3 (—log |x])
for sufficiently small x, where c3 is a positive constant. We also have
uf”? () > c4 (—log |x])

for sufficiently small = with a positive constant ¢;: Suppose x € R? and |z| < 1. We have

W@z [ ey [y
{lz—yl<lyl} {lz—yl<lyl}

Let P denote the hyperplane orthogonal to the straight line connecting x and the or1g1n
0 and contammg the point 19: (For d = 1 it just equals the one-point set containing :v)
Then, if H(,) denotes the closed half space having boundary F,) and containing z, any
y € Hy, satisfies |z — y| < |y|. Writing A? for the d-dimensional Lebesgue measure and K
for the volume of the d-dimensional unit ball, we have, given |z|/2 <r <1,

r 1

Ad(B(O, ’l“) N H{x}) _ Kd—l/ (7“2 _ h2)(d—1)/2dh _ Kd—lrd/ (1 . n2)(d—1)/2dn
|z]/2 lz|/(2r)
for the volume of the spherical cap B(0,7) N Hy,y. For |x| <7 <1 this is bounded below by
c¢(d)r® with a constant ¢(d) > 0 depending on d only. Writing m(r) := A%(B(0,7) N Hy,y)
we therefore have
1 1

u(ld/Q)(a:) > / |u|_ddy = / r—d dm,(r) > c(d)d r~ldr = ca(—log |z|),
B(0,1)NH )\ B(0,|z) |

z| |z

as desired. Now an application of [25, Section 11.3, Theorem 3.1.1] yields Corollary 4 for
200 = d.
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Remark 1.

(i) Alternatively, one can use the R?-valued two-parameter Brownian sheet to characterize
the essential self-adjointness of (A, C§°(N)). A real-valued Gaussian process indexed
by R? is called a two-parameter Brownian sheet if it has mean zero and covariance
function C(s, t) = (s1At1)(saAts), s,t € R2. An R%-valued two-parameter Brownian
sheet is a process (Bt)tem’ where

B; = (B, ..., BY),

and the components (Bi)teRi, i =1,...,d, are independent two-parameter Brownian

sheets. See for instance [25] or [26]. Using the arguments of [21] one can conclude
that (A, C3°(N)) is essentially self-adjoint if and only if ¥ is polar for the two-
parameter Brownian sheet, more precisely, if and only if

/ P(B; +z € S)dt = 0.
Rd

(ii) As mentioned, yet another stochastic process that can be used to characterize the
essential self-adjointness of (A, C§°(V)) is the super-Brownian motion. It is a one-
parameter process but its state space is a space of measures, and its construction
is probabilistically more involved. See for instance [12;35;36] and in particular [36,
Theorem I11.5.2].
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AHHoTanmsa. B craTbe paccmaTpuBaeTcs JanjacHaH U ero APOOHbIE CTeNeHH
NopsiKa MeHblle eIUHHULbl Ha TOMOJHEHUU R? \ ¥ 3aaHHOTrO KOMMAKTHOTO MHO-
xecTBa ¥ C R HyJIeBOH Mephl JleGera. B 3aBucuMocTH OT pasmepa > paccMmaTpH-
BaeMbI{ orepaTop, CHaOXKeHHbIH MMIafKUMUA (GYHKLUHAMHU C KOMIAKTHBIM HOCHUTEJEM
Ha RY \ Y., MOKeT ObIThb WJIM He OBbITh CyILIeCTBEHHO CaMOCOIpsiKeHHBbIM. B uccre-
JNOBAHHWH MBbl UCIOJb3yeM XOPOLIO U3BECTHBIE OMUCAHUS KPUTUYECKOrO pasmepa .
B TepMHHax eMkocTedl U Mep Xaycmopda. Kpome Toro, Mbl HamOMHHaeM B TeKCTe
CTaTbU TpebyeMble MU3BECTHBIE Pe3Y/bTaThl [/ HEKOTOPBIX ABYXIapaMeTpUUeCKHUX
CTOXaCTUUYECKHX TMPOLEeccoB. B nTore Mbl MpUXOAUM K BBIBOAY, YTO XOTS arpHop-
Hasl CyllleCTBEHHAsi CaMOCOMPSIXKEHHOCTb He sIBJISIeTCS TOHSITHEM, HEMOCPeACTBEHHO
CBSI3aHHBIM C KJIaCCHYECKOH BepOSITHOCTbIO, OHA JOMYyCKaeT OMHCaHHUe C MOMOLIbIO
TeopeM Thna KakyTaHu AJisi TaKHMX MPOLECCOB.

KiroueBblie cioBa: JlanJjlaCiaH, CyleCTBeHHass CaMOCOIPAXKEHHOCTb, YCTpa-
HHUMBbIE OCO6€HHOCTI/I, BEpPOATHOCTHOE OIlHCaHue, CﬂyqaﬁHbIe Ipouecchl.
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