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Abstract. Based on a global estimate of the heat kernel, some important
inequalities such as Poincaré inequality and log-Sobolev inequality, furthermore a
tight logarithm Sobolev inequality are presented on graphs, just under a positive
curvature condition CDE'(n, K) with some K > 0. As consequences, we obtain
exponential integrability of integrable Lipschitz functions and moment bounds at
the same assumption on graphs.
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1. Notations and main results

Let G = (V,E) be a symmetric weighted, connected and locally finite graph. The
weight function denote by w,,, we assume w,, = wy, (symmetry), and m(z) :=>_, , way <
< 00, for any x € V' (locally finite). Moreover we assume

Wmin = Inf  wgy > 0.
Yy~ T
z,y €V

Given a positive measure w: V' — R* on graph, and assume that

D, := max m(z) < 00,
zeV LL(J])
D, = max h2) <
:rnyExV wxy

We denote by V® the space of real functions on V, by #(V,u) = {f € V¥ :
DY eev @) | f(2)P < o0}, 1 < p < oo, the space of 7 integrable functions on V' with
respect to the measure p. For p = oo, let £*(V,pn) = {f € VR : sup,.y |f(z)| < oo}
be the set of bounded functions. If for any f,g € (*(V,u), let the inner product as
(f.9) = Y ,ev w(@)f(x)g(x), then the space of ¢*(V,n) is a Hilbert space. For every
function f € #(V,u),1 < p < oo, we can define the norm as follows

1flly = (Z u(fﬁ)lf(@l”) < p < oo.

zeV

We denote by Cy(V') C (V) the dense subset of functions f : V' — R with finite support.
For any graph, it associated with a Dirichlet form, see [7],

QP :D(Q) x D(Q) — &
(F.0) = 5 3 wa(F () — F@(o(w) — 9(a),

T~y

where the form domain D(Q) is defined as the completion of Cy(V') under the norm || - ||g
given by

1
1F1G = 1w + 5 Y wa(f(y) = f(2)) V] € Co(V),

see Keller and Lenz [9]. For the Dirichlet form QP), its infinitesimal generator A is called
the discrete Laplacian A on G by, for any x € V,

Af(x) = ﬁ S (f(4) — f(2)),

it is a bounded operator because of the assumption of D,. And the associated semigroup
P : (2(V,n) — £2(V, ), for any x € V,

Pf(x) = wwp(t,z,y)f(y),

yeV
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where p(t,x,y) is the fundamental solution of the heat equation (heat kernel), we refer
from [9].

Now we introduce the notion of the CDFE’ inequality on graphs from [8]. First we
need to recall the definition of two bilinear forms associated to the p-Laplacian.

Definition 1.1. The gradient form I' and the iterated gradient form I's are respectively
defined by, for any f,g € VE,

2I'(f, 9)( szy F(@)(9(y) — g()),

ny

and

We write I'(f) = I'(f, f), and Ts(f) = I (f, f).

Definition 1.2. We say that a graph G satisfies the exponential curvature dimension in-
equality CDE(x,n, K) if for any positive function f : V' — R™ such that Af(z) < 0, we

have
L@ = D) -1 (172) @02 Lan? + KT,

We say that CDE(n, K) is satisfied if CDE(x,n, K) is satisfied for all x € V.

We say that a graph G satisfies the CDFE'(x,n, K), if for any positive function f :
-V = R, we have

—~ 1
Lo(f)(2) 2 —f(2)* (Alog f) ()" + KT(f)(x).
We say that CDE'(n, K) is satisfied if CDE'(x,n, K) holds for all x € V.

We write [, fdu = >, u(z)f(x). Now we introduce Poincaré inequality and log-
Sobolev inequality on graphs. For all integrable functions f, let

- - ()

be the variance of the function, and for any positive integrable function f such that
Jiv flog fldpu < oo,
=/ flogfdu—/ fdulog/ fdp,
1% 1% 1%
be the entropy.

A graph G = (V, E) is said to satisfy a Poincaré inequality with constant C' > 0, for
any f € D(Q), if

ﬁSOANﬂW7 (P(C))

a log-Sobolev inequality with constants C' > 0, D > 0, for any f € D(Q), if
) <20 [ T(piu+D [ fan (LS(C,D))
v 1%
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There are a useful fact we will use later, that is, we just examine whether the log-Sobolev
inequality holds for any positive value function, since

E(f2) = E(|f?) < 2C /v I (|fl)du + D /V fPdu < 2C /V I(f)dp+ D /V P,

since ||a] — [b]| < |a—0b| for any a,b € R, then I'(| f|) < T'(f). When D = 0, the logarithmic
Sobolev inequality will be called tight, denoted by LS(C).

The main results we derived in this paper are log-Sobolev inequality and the tight
log-Sobolev inequality with appropriate constants on graphs, just under a condition with a
positive curvature.

Theorem 1.1. Let G = (V, E) be a locally finite, connected graph satisfying CDFE'(n, K)
for any K > 0, then for any ty > 0, such that the graph satisfies log-Sobolev inequality
LS(C, D), with

C=2ty, D=2logM,

where M = M(n, K) = !

ﬁ.
()

Theorem 1.2. Under the same conditions of the above theorem, then the graph satisfies
a tight log-Sobolev inequality LS(C") with

y 3 nKC' nKC' nKC'"  nKC' ,
C’—E((l—l— 5 )log<1+ 3 ) 5 log 3 )—l—C’,

where C' = 1536DHDwﬂ%.

We also have two applications of the above theorem, including exponential integrability
and moment bounds, as follows.
Theorem 1.3. Let G = (V, E) be a locally finite, connected graph satisfying CDE'(n, K)
for any K > 0, then there exist a constant 0 < C = C"(n,K) < oo such that, if [ is

1-Lipschitz and [ fdu < oo, we have
/ e dy < ot IO, (L.1)
|4

and
o?(fy fdu)?
e 21-2C0%) < o0,

/ TP du < !

e —

Vv = V1 —2Co?
1

for every 0® < 3.

Theorem 1.4. Under the same conditions of the above theorem, then there exist a constant
0<C=0C"n,K) < oo such that for every p > 2 and every f € (°(V,u), we have

IF15 < IF1I2 +2C(p - 2) (/V F(f)gduf.

If f is Lipschitz, then
1717 < If1I2 +2C (0 = 2N fIIZ,-
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2. log-Sobolev inequality

In this section we focus on log-Sobolev inequality and tight log-Sobolev inequality with
the assumption of positive curvature.

Proof of Theorem 1.1 We divide the proof into several steps.

Step 1. For any function 0 < f € D(Q) and every t > 0,

[ Frogpaw<n [ Tt [ frogpian 2.1)
1%4 1% 1%

This is a relationship between entropy and energy along the semigroup from [C] with-
out diffusion property. We consider a functional ®(s) = [, f2log P, fdu, for any s > 0, and
0 < f e D(Q), where fr =nf, and ny is a nondecreasmg sequence of finitely supported
functions {ny}%>, such that

lim n, = 1.
k—o00

Then, since wyy = wy,, and by the Green’s formula,

o= [ #5 = (L p .

PSf
and
7, RO HE, e -
G = 5 5 X (F ~ i) (PI0) = Pf@)

I e 20y JEWBS (@) fi(@)Pof(y)
_2%2@ o (20 + st - EYRID) SHIBTY
<5 Y e (f20) + F20) — 20 felw) =
:/Vr(fk)du

So that ®'(s) > — [, I'(fi)du for every s > 0. Integrating from 0 to ¢ yields

/f,flongdug Qt/ F(fk)du+/ felog(P.f)*dy.
1% v v

We have
Jrtn= 3 3 ) = o)) <
< lz oy (i) = T ) + %xyzevwmyu(y) - )P+
n %wzevww(ﬂ Sm (@) =1+ [ T <
< [ TWdu+ DY wla) s () 1)
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let £k — oo,

> u(@) (@) (alz) = 1)* = 0,

zeV

and log f,log P, f € £*(V, 1), so we derive what we desire.
Step 2. [f for some ty > 0, there exists a constant M > 0 such that for all

0< feDQ@Q)
1P flloo < M| fl2,

then a logarithmic Sobolev inequality LS(C, D) holds, with
C=2ty, D=2logM.

When || f||2 = 1, since for any z € V,

Piy f(2)] < || Py flloo, We have from (2.1),

[ Frog w2t [ Tk 2108(1P S ) < 2 [ T(F)d+ 200 M
1% % 1%

If || f]l2 # 1, we can apply f = H}{Hg to the above inequality, which immediately leads to the

above result.

Step 3. We obtain LS(C,D) on graph just under the assumption of the positive
curvature.

We first introduce the global estimate of heat kernel. If G = (V, E)) be a locally finite,
connected graph satisfying CDE’'(n, K) with K > 0, then the measure u is finite (see [6]).
We may then assume p is probability measure, then lim; ., p(t,x,-) = 1 in the case of
probability measure. Under the same condition, for any z,y € V, ¢ > 0,

1
pt,z,y) < 77— (2.2)
<1 — e_%t)

(see [8, Proposition 7.5]).
Then, by Holdér inequality and combining with (2.2), we obtain for some ¢y > 0,

[P flloe < M| f1l2;

where M = ——L—+. we together with step 2 immediately end the proof.

1—e~ 3 %0

Proof of Theorem 1.2 From [5], we can divide the proof of the tight log-Sobolev
inequality at the assumption of curvature into several steps.

Step 1. A logarithmic Sobolev inequality LS(C, D) together with Poincaré inequal-
ity P(C") implies a tight logarithmic Sobolev inequality LS(C + C'(£ +1)).

We first introduce Rothaus’s Lemma in the discrete condition from [10]. If f € VR
such that i, f2log(1 + f?)du < oo, then for every a € R,

B(( +aP) S EGP) +2 [ fdu
v
Applied to f = f — Ji fdu with a = [, fdu of the above inequality, yields
B(?) < B +2 [ fau
v
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by the logarithmic Sobolev inequality LS(C, D) applied to f, and combining to the above
inequality we get,

B(f) <20 [ T(Pdu+ (D+2) [ P

and since [, f2dp = fo f2du— ([, fdu)2 for the probability measure w (the finiteness of
measure is true when the graph satisfies CDE’(n, K) with K > 0, see [8]), it remains to
use the Poincaré inequality P(C"), the conclusion is therefore established.

Before the next step, we first show two theorems from [8] and [2]. It will be useful to
prove the graph also satisfy a Poincaré inequality when the curvature of graph is bounded
by a positive number.

Lemma 2.1. If a graph be a locally finite, connected, and satisfy CDE'(n,K) with
K > 0, then the diameter of the natural distance on the graph is [inite, moreover the
upper bound quantitative estimation is

6D.n

D <2 .
= 2Tt I

We refer a lower bound estimate of eigenvalues from [2].
Lemma 2.2. Let a finite graph Q) satisfy CDE(n,p) with p > 0, then

1
A > .
"= 64(5n + 1)D,,D?

Since CDE'(n, K) implies CDE(n, K), see [3], so we have the same result under the
condition of CDE'(n, K) with K > 0. From Lemma 2.1, we find the graph is finite when
it satisfies CDFE'(n, K) with K > 0. So we can use the above lemma when the curvature
is bounded by a positive number.

Step 2. If a graph be a locally finite, connected, and satisfies CDE'(n, K) with
K >0, then the graph satisfies a spectral inequality P(C") with

5n + 1)

C'=C'(n,K) = 15361111%71"(T < .

For any f € D(Q), from spectral theory on graph G, let A; be the i-th eigenvalue,
and {wi}ﬁgl (N is the number of vertices in the subgraph €2) be an orthonormal basis of
eigenfunctions, i.e.

A; = A,
and

(Wi, ) = Z w(@)s(z);(x) = b4y,

zeV

then we can write f = SN ! o,

We obtain
N-1 N-1
—Af=-A Z x\p; = Z oG A,
i=0 i=0
since

N-1 N-1 N-1

D oabic Y oAb = > oA = Aif?

i=0 i=0 i=0
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therefore
[ rau= [ rarazn [ fan

Let C" > }\—11 we may apply f=f- Ji, fdu to the above equality, we obtain the

Poincaré inequality,

V() <C [ T

|4

Combining Lemma 2.1 and Lemma 2.2, we obtain the spectral inequality.
Step 3. Combining Theorem 1.1, step 1 and step 2, we obtain with the condition
CDE'(n,0), the tight log-Sobolev inequality LS(C”) holds with

C"=C"(n,K) =2ty + C'(1+1log M),

where M = —2— and (' = 1536DqunM Minimizing the right-hand side of

ra
the above equality with respect to tg > 0, we have

to = 3 lo 1+nKC”
0_2K g 3 )

so we can get the result from simple computation.

3. Its applications
3.1. Exponential integrability

In this section we prove every integrable Lipschitz function is exponentially integrable
if the Poincaré inequality and the tight log-Sobolev inequality holds respectively, moreover
at the assumption of positive curvature on graphs. For a given Lipschitz function f € D(Q),

1
we denote its Lipschitz norm by || f||,, = [|T'(f)||&. A function is said to be 1-Lipschitz if
[ flley < 1.

Proposition 3.1. Suppose that the graph satisfies the Poincaré inequality with a constant
C'. Then, if f is I-Lipschitz and [, fdu < oo, we have

/ Mdu < oo,
1%

[ 4
for any A </ &

Proof. For any n € Z*. let ¥, (t) = (—n) Vt An. It is easy to know ,,(t) satisfies, for any
t1,to €R

Wi (t1) — Wi (t2)] < |t1 — tal.

Considering f,(x) =, o f(x), which converges to f(z) when n — oo, for every z € V, we
have T'(fo, fn) < T'(fn, f) < T(f, f) < 1. Therefore, using Fatou’s lemma, we may restrict
ourselves to the case where f is bounded by replacing f to f,.
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Then we consider the function g = e’
tion from Proposition 6.7 in [8], then

Af A2 A2
[rehans< [ dmpans [ HMan (3.1)
v 2 Jv 2 )y

setting ¢p(A) = [, M dy, applied the the Poincaré inequality P(C”) to g, we obtain

CA2. LA
5 )< ¢ (5)-

, I'(f) < 1. Since a important discrete estima-

dA)(1 -

If1— C/;‘Q > (), then we have

o) < ()1 - ),

and it remains to iterate the procedure replacing A by % to get the result.

Remark 3.2. We have, of course, a similar result to the general Lipschitz function f with
I'(f) < ¢* for changing f into £,

Proof of Theorem 1.3. As before, we may restrict ourselves to bounded 1-Lipschitz
functions. Consider the function @(s) = [, e*/dp, observe that

©'(s) = /ersfdu,
while
E(e) = S/ersfdu — @(s)log @(s) = 5¢'(s) — @(s) log @(s).

On the other hand, since I'(f) < 1, and (3.1),

sf 52
/ F(e2)du < —@(s).
. 2
Applying LS(C) to ¢(s), then we have

s’ — @log @ < Cs’,

integrating the above inequality. To this end, let F/(s) = Llog ¢(s) (with F(0) = (f)), so
that

9' g
)= 218 ¢
S

it follows,
F(s) < / fdu+ Cs,
v

which amounts to (1.1) immediately. Integrating (1.1) in the s with respect to the measure

_2 22
/em zdt =e7,

o2 12 1 o2 (Jy fdu)?
/ €7f du S - e 2(1-2C¢?) < 0,
\%

V1 —2Co?

for every 02 < % Therefore the second claim holds and the proof ends.

2
_7‘5 .
e 202ds on R. Since

by Fubini’s Theorem, we have
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3.2. Moment bounds on graphs

In this section, we obtain the moment bounds on graphs with positive curvature.
Proof of Theorem 1.4. As before, we first consider positive bounded functions. Con-
sider the functional }(p) = [|f||2, p > 2, for a function 0 < f € £>°(V, n) the derivative of

V(p) given by,

W (p) = §¢<p>1-5E<fp> >0,

applying LS(C) to f%, combining the above equation, we obtain
4C _p P
W) < ) [ T

We need estimate the term [, F(fg)dp for the symmetric property and Holdér inequality,
since

Yo Y w(f@) - fy)E)? =

y~T
fz) < f(y)

V y~a 2
=Y Y et - oy S
=3 Y e U@ fwE?
eV f(ﬂg);f’(y)
so we have
[rubHa= ¥ wn(@k-rwh? <
zeV Yy~
f(x) > f(v)
<Y Y e (B G@ - 1) =
ey f(iy);gj‘(y)
=S f@r? Y wn(f@) = ) <
zeV Yy~

f(x) > f(v)

<53 F@p () <

<2 (z u(w)f”(w)> p (Z u<x>r<f>%’<x>) -

SRS (/ r<f>’5du)§.
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So substitute to the above inequality, we have

v <2 ([ F(f)gduf |

by integration with respect to p, and monotonicity, we can end the proof if f is bounded.

As before, in the general case then follows from consideration of f,,, since we know
[(f,) < T(f), furthermore, || full, = || ]}, with 1 < p < oc from f, — f and | fu] < |f] for
any n € Z*. We complete what we desire.

REMARK

1 Supported by the National Natural Science Foundation of China (Grant No. 11671401).
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Annotaums. B paGore mpeacraBiieHbl HEKOTOpble BaXKHble HepaBEHCTBA Ha
rpaax, Takue Kak HepaBeHCTBO [lyaHkape U Jorapudmuueckoe HepaBeHCTBO Co-
GoJieBa, a TakxKe MJIOTHOE Jorapudmudeckoe HepaBeHcTBO Cobo0JEBa, MOTyUYeHHbIE
Ha OCHOBe [JI00a/JbHOM OLEHKH $iipa YPABHEHHs TEIJONPOBOLHOCTH IPH HaJO-
XKEHHH TOJBKO YCJIOBUS MOJOXKHUTENbHOCTH KpuBU3HBl C'DE’(n, K) ¢ HEKOTOPBIM
K > 0. B kauecTBe C/€ACTBHH Mbl MOJYUYHM/IH IKCIOHEHLHANbHYIO HHTErpUpye-
MOCTb HHTErpPHUPYEMBIX JIMIIIHLEBBIX (PYHKUHH U IPaHHUL] MOMEHTa Ha rpadax mpu
TOM K€ MPEANONOKEHNH.

KaroueBble cjoBa: sorapupmudeckoe HepaBeHcTBo Co6oJieBa, JamnjacHaH,

CDE'(n, K).
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