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Abstract. Given a symmetric Dirichlet form (€, F) on a (non-trivial) o-finite
measure space (E,B,m) with associated Markovian semigroup {7}}c(0,5), We
prove that (£,F) is both irreducible and recurrent if and only if there is no
non-constant B-measurable function u : E — [0,00] that is E-excessive, i.e.,
such that Tyu < u m-a.e. for any t € (0,00). We also prove that these conditions
are equivalent to the equality {u € F. | £(u,u) = 0} = R1, where F, denotes
the extended Dirichlet space associated with (£, F). The proof is based on simple
analytic arguments and requires no additional assumption on the state space or
on the form. In the course of the proof we also present a characterization of the
E-excessiveness in terms of F, and &£, which is valid for any symmetric positivity
preserving form.
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1. Introduction and the statement of the main theorem

Since the classical theorem of Liouville saying that there is no non-constant bounded
holomorphic function on C, non-existence of non-constant bounded (super-)harmonic func-
tions on the whole space, so-called Liouville property, has been one of the main concerns
of harmonic analysis on various spaces. One of the most well-known facts about Liouville
property is that the non-existence of non-constant bounded superharmonic functions on the
whole space is equivalent to the recurrence of the corresponding stochastic process. Such
an equivalence is known to hold for standard processes on locally compact separable metriz-
able spaces by Blumenthal and Getoor [1, Chapter II, (4.22)] and also for more general
right processes by Getoor [9, Proposition (2.4)]. Getoor [8, Proposition 2.14] provides the
same kind of equivalence in terms of excessive measures. The purpose of this paper is to
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give a completely elementary proof of this equivalence in the framework of an arbitrary
symmetric Dirichlet form on a (non-trivial) o-finite measure space. Our proof is purely
functional-analytic and free of topological notions on the state space, although we need to
assume the symmetry of the Dirichlet form.

In the rest of this section, we describe our setting and state the main theorem. We
fix a o-finite measure space (E,B,m) throughout this paper, and below all B-measurable
functions are assumed to be [—o0, co]-valued. Let (£, F) be a symmetric Dirichlet form
on L?(E,m) and let {T}}tc(0,00) be its associated Markovian semigroup on L*(E,m). Let
L.(E,m):={f]|f:E — [0,00], fis B-measurable} and L°(E,m) = {f | f: E —
— R, f is B-measurable}, where we of course identify any two B-measurable functions
which are equal m-a.e. Let 1 denote the constant function 1 : £ — {1}, and we regard
R1 := {cl | ¢ € R} as a linear subspace of L°(E,m). Also let LE (E,m) := LP(E,m) N
N L (E,m) for p € [1,00] U{0}. Note that T} is canonically extended to an operator on
L, (E,m) and also to a linear operator from D[T}] := {f € L°(E,m) | T;|f| < co m-a.e.}
to L°(E,m); see Proposition 1 below.

Definition 1. w € L (E,m) is called E-excessive if and only if Tyu < uw m-a.e. for any
t € (0,00). Similarly, u € (Ve (9 0) D[T4] is called E-excessive in the wide sense if and only
if Tyu < w me-a.e. for any t € (0,00).

Remark 1. As stated in [1;2;6;7;14], when we call a function u excessive, it is usual to
assume that w is non-negative, which is why we have added “in the wide sense” in the
latter part of Definition 1.

E-excessive functions will play the role of superharmonic functions on the whole state
space, and the main theorem of this paper (Theorem 1) asserts that (£, F) is irreducible
and recurrent if and only if there is no non-constant £-excessive function.

Yet another possible way of formulation of harmonicity of functions (on the whole space
E) is to use the extended Dirichlet space F, associated with (£, F); u € F. could be called
“superharmonic” it £(u,v) > 0 for any v € F. N L (E,m), and “harmonic” if E(u,v) =0
for any v € F,, or equivalently, if £(u,u) = 0. In fact, as a key lemma for the proof of the
main theorem, in Proposition 3 below we prove that u € F. is “superharmonic” in this sense
if and only if u is £-excessive in the wide sense. Under this formulation of harmonicity, if
(E,F) is recurrent, ie., 1 € F, and £(1,1) = 0, then the non-existence of non-constant
harmonic functions amounts to the equality

{ue F. | E(u,u) =0} =R1. (1.1)

Oshima [10, Theorem 3.1] proved (1.1) (and the completeness of (F./R1,E) as well)
for the Dirichlet form associated with a symmetric Hunt process which is recurrent in the
sense of Harris; note that the recurrence in the sense of Harris is stronger than the usual
recurrence of the associated Dirichlet form. Fukushima and Takeda [7, Theorem 4.2.4] (see
also [2, Theorem 2.1.11]) showed (1.1) for irreducible recurrent symmetric Dirichlet forms
(€,F) under the (only) additional assumption that m(E) < oco. In the recent book [2],
Chen and Fukushima has extended this result to the case of m(F) = oo when (&€, F) is
regular, by using the theory of random time changes of Dirichlet spaces. As part of our
main theorem, we generalize (1.1) to any irreducible recurrent symmetric Dirichlet form.
In fact, this generalization could be obtained (at least when L?(FE,m) is separable) also by
applying the theory of regular representations of Dirichlet spaces (see [6, Section A.4]) to

90 N. Kajino. Equivalence of recurrence and Liouville property for symmetric Dirichlet forms



s MATEMA T K A I

reduce the proof to the case where (€, F) is regular. The advantage of our proof is that it
is based on totally elementary analytic arguments and is free from any use of time changes
or regular representations of Dirichlet spaces.

Here is the statement of our main theorem. See [2, Section 1.1] or [4, Section 1] for
basics on F., and [6, Sections 1.5 and 1.6] or [2, Section 2.1] for details about irreducibility
and recurrence of (£, F). We remark that F. C (\,c(g) P[Ti] by Lemma 2-(1) below. We
say that (E,B,m) is non-trivial if and only if both m(A) > 0 and m(E \ A) > 0 hold for
some A € B, which is equivalent to the condition that L?(E,m) ¢ R1 since (E,B,m) is
assumed to be o-linite.

Theorem 1. Consider the following six conditions.

1) (€, F) is both irreducible and recurrent.

2) {ue F. | E(u,u) =0} =R1.

3) {fue Fe.NLP(E,m) | E(u,u) =0} = {cl | ce[0,00)}.

4) If u € F. is E-excessive in the wide sense then u € R1.

5) If u € LY (E,m) is E-excessive then u € R1.

6) If ue F.NLX(E,m) is E-excessive then u € R1.

The three conditions 1),2),3) are equivalent to each other and imply 4),5),6). If
(E, B,m) is non-trivial, then the six conditions are all equivalent.

The organization of this paper is as follows. In Section 2, we prepare basic results
about the extended space F. and E-excessive functions, which are valid as long as (€, F)
is a symmetric positivity preserving form. The key results there are Propositions 3 and 4,
which are essentially known but seem new in the present general framework. Furthermore
Proposition 4 provides a characterization of the notion of £-excessive functions in terms of
F. and £. Making use of these two propositions, we show Theorem 1 in Section 3.

2. Preliminaries: the extended (Dirichlet) space and excessive functions

As noted in the previous section, we fix a o-finite measure space (E, 5, m) throughout
this paper, and all B-measurable functions are assumed to be [—00, co-valued. Note that by
the o-finiteness of (E, B, m) we can take n € L'(E,m) N L>(E,m) such that n > 0 m-a.e.
Notation. (0) We follow the convention that N ={1,2,3,...},ie., 0 € N.

(1) For a,b € [—00, 0], we write a V b := max{a, b}, a A b := min{a, b}, a* :=a Vv 0 and
a” = —(aN0). For {a,}nen C [—00,00] and a € [—00, 00|, we write a,, T a (resp. a, | a)
if and only if {a, }nen is non-decreasing (resp. non-increasing) and lim,, . a, = a. We use
the same notation also for (m-equivalence classes of) [—o0, oo]-valued functions.

(2) As introduced before Definition 1, identifying any two B-measurable functions that are
equal m-a.e., we set L, (E,m) :={f | f: E — [0,00], f is B-measurable}, L°(E,m) :=
={f| f: E — R, fis B-measurable} and L% (E,m) := LP(E,m) N Ly(E,m), p €
€ [1,00] U{0}. We regard R1 := {c1 | ¢ € R} as a linear subspace of L°(E,m). Let
| - ||, denote the norm of LP(E,m) for p € [1,00]. Finally, let (f,g) := [, fgdm for
f,9 € Ly(E,m) and also for f,g € L°(FE,m) with fg € L'(E,m).

Recall the following definitions regarding bounded linear operators on L*(E,m).

Definition 2. Let T': L>(E,m) — L*(E,m) be a bounded linear operator on L*(E,m).
(1) T is called positivity preserving if and only if T f > 0 m-a.e. for any f € L% (E,m).
(2) T is called Markovian if and only if 0 < Tf < 1 m-a.e. for any f € L*(E,m) with
0< f<1me-ae.
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Clearly, if T' is positivity preserving then so is its adjoint 7. Note that if 7' is
Markovian, then it is positivity preserving, ||Tf||e < ||f|ls for any L2(E,m) N L>®(E,m)
and | T* f|l1 < ||f1 for any f € L*(E,m) N L?*(E, m). Moreover, using the o-finiteness of
(E, B, m), we easily have the following proposition.

Proposition 1. Let T : L?(E,m) — L*(E,m) be a positivity preserving bounded linear
operator on L*(E,m).

(1) T’Li(E,m) uniquely extends to a map T : L, (E,m) — L,(FE,m) such that Tf, 1 Tf
m-a.e. for any f € L. (F,m) and any {fn}neny C Ly (E, m) with f, T f m-a.e. Moreover,
let f,g € Ly(E,m) and a € [0,00]. Then T(f +9)=Tf+Tg, T(af)=aTf, (Tf,g) =
= (f,T*g), and if f < g m-a.e. then Tf < Tg m-a.e.

(2) Let D[T] := {f € L°(E,m) | T|f| < oo m-a.e.}. Then T : L*(E,m) — L*(E,m)
is extended to a linear operator T : D[T| — L°(E,m) given by Tf :=T(fT) —T(f"),
f € DITY, so that it has the following properties:

(i) If f,g € D[T)| and f < g m-a.e. then Tf < Tg m-a.e.

(ii) If {fn}nen C D[T)| and f, g € DIT] satisfy lim,, o fn = f m-a.e. and | f,| < |g| m-a.e.
for any n € N, then lim,, .. T'f, =T f m-a.e.

Throughout the rest of this paper, we fix a closed symmetric form (£, F) on L?(E,m)
together with its associated symmetric strongly continuous contraction semigroup {7} }1e(0,00)
and resolvent {Gy}uae(0,00) 01 L*(E,m); see [6, Chapter 1.3] for basics on closed symmetric
forms on Hilbert spaces and their associated semigroups and resolvents.

Let us further recall the following definition.

Definition 3. (1) (£, F) is called a positivity preserving form if and only if u* € F and
E(wt,ut) < E(u,u) for any uw € F, or equivalently, Ty is positivity preserving for any
t € (0,00).
(2) (€, F) is called a Dirichlet form if and only ifu™ A1 € F and E(ut A1, ut A1) < E(u,u)
for any u € F, or equivalently, T, is Markovian for any t € (0, 00).

See, e.g., [11, Section 2] for the equivalences stated in Definition 3.

In the rest of this section, we assume that (£, F) is a positivity preserving form. The
following definition is standard (see [12, Definition 3], [2, Definition 1.1.4] or [4, Definition
1.4]).

Definition 4. We define the extended space F, associated with (€, F) by

(2.1)

- 0
Fo = {U el (E; m) with hmk/\éaoog(uk — g, g — ’U,g) —0

lim,, o0 t, = u m-a.e. for some {u, }nen C }"}

For u € Fe, such {u,}nen C F as in (2.1) is called an approximating sequence for u. When
(€, F) is a Dirichlet form, F, is called the extended Dirichlet space associated with (&, F).

Obviously F C F, and F, is a linear subspace of L°(E, m). By virtue of [13, Proposi-
tion 2], F = F, N L*(E,m), and for u,v € F, with approximating sequences {u,, }nen and
{vn }nen, respectively, the limit lim,, o, €(u,,v,) € R exists and is independent of partic-
ular choices of {u,}nen and {v, }nen, as discussed in [12, before Definition 3]. By setting
E(u,v) = limy, 00 E(Up, vy), € is extended to a non-negative definite symmetric bilinear
form on F.. Then it is easy to see that lim, ,o, £(u — up,u — u,) = 0 for u € F, and any
approximating sequence {uy}nen C F for u. Moreover, we have the following proposition
due to Schmuland [12], which is easily proved by utilizing a version [2, Theorem A.4.1-(ii)]
of the Banach — Saks theorem.
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Proposition 2 ([12, Lemma 2]). Let u € L°(E,m) and {up}nen C F satisfy lim, oo u, =
= u m-a.e. and liminf,, o E(up, u,) < 0o. Then u € F,, E(u,u) < liminf, o E(up, uy),
and liminf, . &(un, v) < E(u,v) < limsup,,_, . E(u,,v) for any v € F..

In particular, we easily see from Proposition 2 that u™ € F, and £(ut,u™) < E(u,u)
for any u € F..

Remark 2. For symmetric Dirichlet forms, the properties of F, stated above are well-known
and most of them are proved in the textbooks [2, Section 1.1] and [7, Section 4.1] and also

in [4, Section 1]. In fact, we can verify similar results in a quite general setting; see
Schmuland [12] for details.

The next proposition (Proposition 3 below) requires the following lemmas.

Lemma 1. Let 1 € L'(E,m) N L*(E,m) be such that n > 0 m-a.e., and set ||u||z, =
= E(u,u)? + [,(lu| A1) dm for u € F,. Then we have the following assertions:

() Nlu+vllr < llullz + vz and laulr, < (Jaf v Dlullz for any u,v € Fe and any
a € R
(2) F. is a complete metric space under the metric dx, given by dx. (u,v) = ||u — v £,.

Proof. (1) is immediate and dx, is clearly a metric on F,. For the proof of its completeness,
let {w, }neny C Fe be a Cauchy sequence in (F.,dx, ). Noting that F is dense in (Fe, dx.),
for each n € N take v, € F such that ||v, — u,||z, < n~'. Then {v, }nen is also a Cauchy
sequence in (F.,dx). A Borel-Cantelli argument easily yields a subsequence {v,, }ren
of {v,}nen converging m-a.e. to some u € LY(E,m), which means that u € F, with
approximating sequence {v,, }xen and hence that limg_,o |4 — vy, ||z, = 0. The same
argument also implies that every subsequence of {v,},en admits a further subsequence
converging to u in (Fe, dx,), from which lim,_, ||[u—v,||z = 0 follows. Thus lim,,_, ||u—
— un|lz = 0.

Lemma 2. (1) F. C (\yc(o,00) PI1t] and Ti(Fe) C F. for any t € (0,00).
(2) Let n and || - ||, be as in Lemma 1, and let u € F.. Then E(Tyu,Tiu) < E(u,u),
lu—Toull3 < t€(u,u) and || Toullz, < (3+[ll2v/E)l|ullz. for any t € (0,00), TLTiu = Typpu

for any s,t € (0,00), and lim g ||U_— Tz, = 0.

Proof. Let n, || - ||z and dx be as in Lemma 1. First we prove (2) for v € F. The
fourth assertion is clear. Tiu € F and E(Tyu, Tyu) < E(u,u) for t € (0,00) by [6, Lemma
1.3.3-(i)], and limy o ||u — Tyul|z, = 0 by [6, Lemma 1.3.3-(iii)]. Let ¢ € (0,00). Noting
that (f ~ Tof, Tif) = | Tyof3 — ITif3 2 O for £ € L(E,m), we have [Ju— Tyul}} = {u—
— Tw,u) — (u — Tyu, Tyu) < (u— Tyu,u) < t€(u,u) by [6, Lemma 1.3.4-(i)]. Applying
these estimates to ||u — Tyul 7 < E(u, w)Y? + E(Tyu, Tyu)Y? + |n||2|ju — Tyul|2 easily yields
I Teull 7. < (3 + Inll2vD) [l ..

Now since F is dense in a complete metric space (F., dx,), it follows from the previous
paragraph that 73| is uniquely extended to a continuous map 7y from (F.,dx,) to itself,
and then clearly 7 is linear and the assertions of (2) are true with 7 in place of T7;.

Let t € (0,00) and u € F. N Ly (FE,m). It remains to show Tfu = Tyu, as v, v~ € F,
for v € F,. Since v Au € F.NL*(E,m) = F and E(v* Au,vt Au)Y2 < E(v,v)Y2 +
+ &(u,u)'/? for any v € F by the positivity preserving property of (£, F), an application of
the Banach-Saks theorem [2, Theorem A.4.1-(ii)] assures the existence of an approximating
sequence {wy, }nen for w such that 0 < w, < u m-a.e. A Borel — Cantelli argument yields
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a subsequence {wy, tren such that limy_,o Tyw,, = TYu m-a.e., and Tfu = Tiu follows by
letting k& — oo in T3 (inf;>, wy,) < Tyw,, < Tyu m-a.e.

The following proposition (Proposition 3), which seems new in spite of its easiness,
plays an essential role in the proof of 1) = 2) of Theorem 1. Proposition 3-(2) is an
extension of a result of Chen and Kuwae [3, Lemma 3.1] for functions in F to those in F,,
and Proposition 3-(3) extends a basic fact for functions in F to those in F..

Proposition 3. (1) Let u € F. and v € F. Then

1 t

ltii%l ;(u — Twu,v) = E(u,v)  and (u—Twu,v) = / E(u, Tyv)ds, te (0,00). (2.2)
0

(2) Let u € F,.. Then u is E-excessive in the wide sense if and only if £(u,v) > 0 for any

v e FNL(E,m), or equivalently, for any v € F. N Ly (E,m).

(3) Let u € F.. Then Tyu = u for any t € (0,00) if and only if E(u,u) = 0.

Proof. (1) Let u € F., v € F and set @(t) := (u — Tyu,v) for t € [0, 00), where Tyu := u.
Then t~@(t)] < E(u,u)2E (v, v)/? for t € (0,00) and limy ot to(t) = E(u,v) if u € F
by [6, Lemma 1.3.4-(i)], and the same are true for u € F, as well by Lemma 2. Using
Lemma 2, we easily see also that ¢’(t) = £(u, T1v) for ¢ € [0, 00) and that ¢’ is continuous
on [0,00), proving (2.2).

(2) The third assertion of Proposition 2 together with the positivity preserving property of
(€, F) easily implies that £(u,v) > 0 for any v € F N L (F,m) if and only if the same is
true for any v € F. N L, (E,m). The rest of the assertion is immediate from (2.2).

(3) This is an immediate consequence of (2).

The next proposition (Proposition 4), which characterizes the notion of £-excessive
functions in terms of F, and &, is of independent interest. The proof is based on a result
[11, Corollary 2.4] of Ouhabaz which provides a characterization of invariance of closed
convex sets for semigroups on Hilbert spaces. A similar argument in a more general
framework can be found in Shigekawa [14].

Proposition 4. Let u € L, (E,m). Then u is E-excessive if and only if v Au € F, and
EwNAu,vANu) < E(v,v) for any v € F..

1. The notion of E-excessive functions is determined solely by the pair (F.,E) of the
extended space F. and the form £ : F. x F. — R.

2. Let uw € L (E,m) be E-excessive and v € F,. Suppose u < v m-a.e. Then u € F,
and E(u,u) < E(v,v).

Remark 3. Chen and Kuwae [3, Lemma 3.3] gave a probabilistic proof of Corollary 2 for
the Dirichlet forms associated with symmetric right Markov processes.

Proof of Proposition 4. Let K, := {f € L*(E,m) | f < u m-a.e.}, which is clearly a
closed convex subset of L*(F,m). We claim that

u is E-excessive if and only if T3(K,) C K, for any ¢ € (0, 00). (2.3)

Indeed, let t € (0,00). If Tiu < u m-a.e. then T, f < Tyu < u m-a.e. for any f € K, and
hence T}(K,) C K,. Conversely if T;(K,,) C K,, then choosingn € L?*(E, m) so thatn > 0
m-a.e., we have (nm)Au T um-a.e., (nn)Au € K, and hence Tyu = lim,,_,o, T3 ((nm)Au) < u
m-a.e.
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On the other hand, since the projection of f € L?*(E,m) on K, is given by f A u,
[11, Corollary 2.4] tells us that T;(K,) C K, for any ¢t € (0,00) if and only if

vAueF and E(wAu,vAu)<E(v,v) for any v € F. (2.4)

Finally, 7, N L?*(E,m) = F and Proposition 2 easily imply that (2.4) is equivalent to the
same condition with F. in place of F, completing the proof.

3. Proof of Theorem 1

We are now ready for the proof of Theorem 1. We assume throughout this section
that our closed symmetric form (€, F) is a Dirichlet form. The proof consists of three
steps. The first one is Proposition 5 below, which establishes 1) = 2) of Theorem 1 and
whose proof makes full use of Proposition 3-(3). Recall the following notions concerning the
irreducibility of (£, F); see [6, Section 1.6] or [2, Section 2.1] for details.

Definition 5. (1) A set A € B is called E-invariant if and only if 1,T;(f1ma) = 0 m-a.e.
for any f € L*(E,m) and any t € (0, 00).

(2) (&€, F) is called irreducible if and only if either m(A) = 0 or m(E \ A) = 0 holds for
any E-invariant A € B.

Lemma 3. Let u € L (E,m) be E-excessive. Then {u = 0} is E-invariant.

Proof. In fact, the following proof is valid as long as (£, F) is a symmetric positivity
preserving form. Let B := {u = 0}, f € L*(E,m) and set f,, := |f| A (nu) for n € N,
so that f, T |f|lgpp m-a.e. Then 0 < 157T,f, < 1gTi(nu) < nlpu = 0 m-a.e., and
letting n — oo leads to [15T3(f1mp)| < 15Ti(|f|1p\s) = 0 m-a.e. Thus B = {u = 0} is
E-invariant.

Proposition 5. Suppose that (€, F) is irreducible. If u € F, and E(u,u) = 0 then u € R1.

Proof. We follow [2, Proof of Theorem 2.1.11, (i) = (ii)]. Let u € F, satisfy £(u,u) = 0.
We may assume that m({u > 0}) > 0. Let A € [0,00) and up := u — u A A. Since (&€, F)
is assumed to be a Dirichlet form, uy € F. N Ly (E,m) and E(up,up) = 0 (see Proposition
4), and therefore Tyup = wuy for any t € (0,00) by Proposition 3-(3). Then {u) = 0} is
E-invariant by Lemma 3, and the irreducibility of (£, F) implies that either m({uy = 0}) =0
or m({ux > 0}) = 0 holds. Now setting k := sup{A € [0,00) | m({up = 0}) = 0}, we
easily see that k € (0, 00) and that u = k m-a.e.

For the rest of the proof of Theorem 1, let us recall basic notions concerning recurrence
and transience of Dirichlet forms. See [6, Sections 1.5 and 1.6] or [2, Section 2.1] for
details. For ¢ € (0,00), we define S, : L*(E,m) — L*(E,m) by S;f := [, Tof ds, where
the integral is the Riemann integral in L?(E,m). Then ¢~1S; is a Markovian symmetric
bounded linear operator on L?*(FE,m), and therefore it is canonically extended to an operator
on L, (FE,m) by Proposition 1. Furthermore, for any s,t € (0,00) we easily see that
Sepe = Sy + TSy = Sy + SiT, as operators on L, (E,m) or on L*(E,m).

Let f € L (E,m). Then 0 < Sf < S;f m-ae. and 0 < Ggf < Guf m-a.e. for
0 < s <t 0< o < B. Therefore there exists a unique Gf € L, (E,m) satisfying
Syf 1T Gf m-ae. It is immediate that G f,, 1 Gf m-a.e. for any {f,}nen C Ly (F, m) with
fn T f m-a.e. Since, on L*(E,m), {Ga}ae(0,00) is the Laplace transform of {7} }ie(0,00), We
see that Sy, f 1 Gf m-a.e. and G, f T Gf m-a.e. for any {t, }nen, {o fnen C (0, 00) with
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t, T 00, &, | 0. Moreover, since Syynf = Sif + T1Snf > TiSnf m-a.e. for t € (0, 00) and
N € N, by letting N — oo we have ;G f < G'f m-a.e., that is, Gf is £-excessive. We call
this operator G : L (E,m) — L, (E,m) the O-resolvent associated with (£, F).

Definition 6 (Transience and Recurrence). (1) (€, F) is called transient if and only if
Gf < oo m-a.e. for some f € L (E,m) with f >0 m-a.e.
(2) (&, F) is called recurrent if and only if m({0 < Gf < oo}) =0 for any f € L (E, m).

By [6, Lemma 1.5.1], (&£, F) is transient if and only if Gf < oo me-a.e. for any
f € LL(E,m). On the other hand, by [6, Theorem 1.6.3], (€, F) is recurrent if and only if
1€ F.and £(1,1) =0.

The following proposition is the second step of the proof of Theorem 1.

Proposition 6. Assume that (€, F) is recurrent. If u € L (E,m) is E-excessive then
u € F. and E(u,u) = 0.

Proof. Let n € N. Then uAn < nl m-a.e,, nl € F, and £(nl,nl) = 0 by the recurrence of
(€, F), and uAn is E-excessive since so are v and 1. Thus uAn € F, and E(uAn,uAn) =0
by Corollary 2. Lemma 1-(2) implies that lim,_,« |[[v — u A n||z = 0 for some v € F, with
| - || as defined there, and then we easily have u = v € F, and (u,u) = 0.

As the third step, now we finish the proof of Theorem 1.

Proof of Theorem 1. 1) = 2) follows by Proposition 5, and so does 1) = 5) by Propositions
5 and 6. 2) = 3), 4) = 6) and 5) = 6) are trivial.

1) = 4): Let u € F, be £-excessive in the wide sense, n € N and u,, := u A n. Then
U, € Fe, u, is also E-excessive in the wide sense, nl — u,, € F. N Ly (E, m) and hence
E(un,uy) = E(Up,u, —nl) < 0 by Proposition 3-(2). As in the proof of Proposition 6,
letting n — oo we get £(u,u) = 0 by Lemma 1-(2), and hence u € R1 by Proposition 5.

3) = 1): (£, F) is recurrent since 1 € F, and £(1,1) = 0. Let A € B be E-invariant. Then
1a=141€ F.NLE(E,m) and 0 < E(14,14) < E(1,1) =0 by [6, Theorem 1.6.1]. Now
3) implies 14 € R1, and hence either m(A) =0 or m(E \ A) = 0.

6) = 3) when (E,B,m) is non-trivial: Choose g € L'(E,m) so that ¢ > 0 m-a.e., and
set B, := {Gg = oo}. Then 1p, € F. N LE(E,m) and E(1g,,15,) = 0 by [6, Corollary
1.6.2], and 6) together with Proposition 3-(3) implies 15, € R1, i.e., either m(E,) = 0 or
m(E \ E.) = 0. In view of 6) and Proposition 3-(3), it suffices to show m(E \ E.) = 0.

Suppose m(E,) = 0, so that (£, F) is transient, and setn := ¢g/(1VGg). Then 0 <1 <
< gme-a.e.and (n,Gn) < (9/(1VGyg),Gg) < ||gll1 < cc. Let f € LL(E,m)NL*(E,m) and
set f,, := fA(nm) for n € N. Then f, € L2(E,m), Gf, <nGn < co m-a.e., {fn, Gf,) < 00
and f, 1 f meace. Since E(Gafu Gafn) < (fusGafu) < (fus Gfa) < 00 for a € (0,00),
Proposition 2 implies G f,, € F.. Since G'f,, is £-excessive, so is n A G f, € F. N LY (E,m)
and 6) yields n A G f,, € R1. Letting n — oo and noting G f < co m-a.e. by the transience
of (£,F), we get Gf € R1. Let « € (0,00). Then Guf € LY (E,m)N L*(E,m) and
hence GG« f € R1. Letting n — oo in Gof = Gijnf — (¢ — 1/n)G1/,,Gof implies that
Gof = Gf — «GGyf € R1. Since aGyf — f in L*(E,m) as o — oo, we conclude
that L1 (E,m)NL?(E, m) C R1, contradicting the assumption that (E, 3, m) is non-trivial.
Thus m(E \ E.) = 0 follows.
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9KBUBAJIEHTHOCTb PEKYPPEHTHOCTH H JINYBUJIJIEBA CBOVCTBA
JJId CAMMETPHUYHbIX ®OPM JTHUPHUXJIE
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AnHoTtauus. PaccmoTpuMm cumMmerpuuHyo ¢opmy Hupuxae (€, F) Ha o-
KOHEUHOM (HeTpHBHaJbHOM) MeTpHuecKoM mpocTpaHcTse (K, B, m) ¢ accounupo-
BaHHOH MapKoBcKoH mosyrpynnoit {7}ic(0,00)- B padorte pokasamo, uto (€, F)
HeCOKpaTHMast U PeKyppeHTHast TOTa M TOJIbKO TOr/Ja, KOra He CyIIeCTBYeT Hero-
CTOSIHHOH B-u3amepumMoit u E-3KkcueccuBHOR GyHKUMH u @ E — [0, 00], TO ecTb Ta-
ko#t, uto Tyu < u m-a.e. pist Beex t € (0,00). Tak xe n0Ka3aHO, YTO ITU YCIOBUS
sKBHBaseHTHb! paBeHctBY {u € F. | £(u,u) = 0} = R1, rge F. o3Hayaer pac-
uMpeHHoe mpoctpancTBo Jupuxae, accounupoBantoe ¢ (£, F). JlokazaTeabCTBO
YHCTO AHAJUTHYECKOe W He TpeOyeT NOMOJHHUTEJNbHBIX OrpaHHUYeHHE Ha (ha3oBoe
NPOCTPaHCTBO M (opmy. B mpouecce nokasaTenbcTBa Tak ke NpeACTaBJeHa Xa-
pakTepucTHKa E-3KCLECCUBHOCTH B TepMHHax JF. U &, KOTOpas ClpaBeluBa AJsi
JI0O0H CUMMETPUYHOH (POPMBI, COXPAHSIOLLIEH M0J0KHUTENbHOCTD.

KuioueBble cioBa: cuMMeTprHuHble opMbl JJupuxie; cMiMMeTpHUHble POPMBI,
COXpaHsIIoLIMe T0J0XKUTEJbHOCTD; pacliipeHHoe NpocTpaHcTBO [upuxJe, skcuec-
CUBHble (DYHKLHUH, PEKyPPEHTHOCTb, JIMYBUJ/JIE€BO CBOHCTBO.
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