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Abstract. Given a symmetric Dirichlet form (ℰ ,ℱ) on a (non-trivial) σ-finite
measure space (𝐸,ℬ,𝑚) with associated Markovian semigroup {𝑇𝑡}𝑡∈(0,∞), we
prove that (ℰ ,ℱ) is both irreducible and recurrent if and only if there is no
non-constant ℬ-measurable function 𝑢 : 𝐸 → [0,∞] that is ℰ-excessive, i.e.,
such that 𝑇𝑡𝑢 ≤ 𝑢 𝑚-a.e. for any 𝑡 ∈ (0,∞). We also prove that these conditions
are equivalent to the equality {𝑢 ∈ ℱ𝑒 | ℰ(𝑢, 𝑢) = 0} = R1, where ℱ𝑒 denotes
the extended Dirichlet space associated with (ℰ ,ℱ). The proof is based on simple
analytic arguments and requires no additional assumption on the state space or
on the form. In the course of the proof we also present a characterization of the
ℰ-excessiveness in terms of ℱ𝑒 and ℰ , which is valid for any symmetric positivity
preserving form.

Key words: symmetric Dirichlet forms, symmetric positivity preserving
forms, extended Dirichlet space, excessive functions, recurrence, Liouville prop-
erty.

1. Introduction and the statement of the main theorem

Since the classical theorem of Liouville saying that there is no non-constant bounded
holomorphic function on C, non-existence of non-constant bounded (super-)harmonic func-
tions on the whole space, so-called Liouville property, has been one of the main concerns
of harmonic analysis on various spaces. One of the most well-known facts about Liouville
property is that the non-existence of non-constant bounded superharmonic functions on the
whole space is equivalent to the recurrence of the corresponding stochastic process. Such
an equivalence is known to hold for standard processes on locally compact separable metriz-
able spaces by Blumenthal and Getoor [1, Chapter II, (4.22)] and also for more general
right processes by Getoor [9, Proposition (2.4)]. Getoor [8, Proposition 2.14] provides the
same kind of equivalence in terms of excessive measures. The purpose of this paper is to
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give a completely elementary proof of this equivalence in the framework of an arbitrary
symmetric Dirichlet form on a (non-trivial) σ-finite measure space. Our proof is purely
functional-analytic and free of topological notions on the state space, although we need to
assume the symmetry of the Dirichlet form.

In the rest of this section, we describe our setting and state the main theorem. We
fix a σ-finite measure space (𝐸,ℬ,𝑚) throughout this paper, and below all ℬ-measurable
functions are assumed to be [−∞,∞]-valued. Let (ℰ ,ℱ) be a symmetric Dirichlet form
on 𝐿2(𝐸,𝑚) and let {𝑇𝑡}𝑡∈(0,∞) be its associated Markovian semigroup on 𝐿2(𝐸,𝑚). Let
𝐿+(𝐸,𝑚) := {𝑓 | 𝑓 : 𝐸 → [0,∞], 𝑓 is ℬ-measurable} and 𝐿0(𝐸,𝑚) := {𝑓 | 𝑓 : 𝐸 →
→ R, 𝑓 is ℬ-measurable}, where we of course identify any two ℬ-measurable functions
which are equal 𝑚-a.e. Let 1 denote the constant function 1 : 𝐸 → {1}, and we regard
R1 := {𝑐1 | 𝑐 ∈ R} as a linear subspace of 𝐿0(𝐸,𝑚). Also let 𝐿𝑝

+(𝐸,𝑚) := 𝐿𝑝(𝐸,𝑚) ∩
∩ 𝐿+(𝐸,𝑚) for 𝑝 ∈ [1,∞] ∪ {0}. Note that 𝑇𝑡 is canonically extended to an operator on
𝐿+(𝐸,𝑚) and also to a linear operator from 𝒟[𝑇𝑡] := {𝑓 ∈ 𝐿0(𝐸,𝑚) | 𝑇𝑡|𝑓 | < ∞ 𝑚-a.e.}
to 𝐿0(𝐸,𝑚); see Proposition 1 below.
Definition 1. 𝑢 ∈ 𝐿+(𝐸,𝑚) is called ℰ-excessive if and only if 𝑇𝑡𝑢 ≤ 𝑢 𝑚-a.e. for any
𝑡 ∈ (0,∞). Similarly, 𝑢 ∈

⋂︀
𝑡∈(0,∞)𝒟[𝑇𝑡] is called ℰ-excessive in the wide sense if and only

if 𝑇𝑡𝑢 ≤ 𝑢 𝑚-a.e. for any 𝑡 ∈ (0,∞).

Remark 1. As stated in [1; 2; 6; 7; 14], when we call a function 𝑢 excessive, it is usual to
assume that 𝑢 is non-negative, which is why we have added “in the wide sense” in the
latter part of Definition 1.

ℰ-excessive functions will play the role of superharmonic functions on the whole state
space, and the main theorem of this paper (Theorem 1) asserts that (ℰ ,ℱ) is irreducible
and recurrent if and only if there is no non-constant ℰ-excessive function.

Yet another possible way of formulation of harmonicity of functions (on the whole space
𝐸) is to use the extended Dirichlet space ℱ𝑒 associated with (ℰ ,ℱ); 𝑢 ∈ ℱ𝑒 could be called
“superharmonic” if ℰ(𝑢, 𝑣) ≥ 0 for any 𝑣 ∈ ℱ𝑒 ∩ 𝐿+(𝐸,𝑚), and “harmonic” if ℰ(𝑢, 𝑣) = 0
for any 𝑣 ∈ ℱ𝑒, or equivalently, if ℰ(𝑢, 𝑢) = 0. In fact, as a key lemma for the proof of the
main theorem, in Proposition 3 below we prove that 𝑢 ∈ ℱ𝑒 is “superharmonic” in this sense
if and only if 𝑢 is ℰ-excessive in the wide sense. Under this formulation of harmonicity, if
(ℰ ,ℱ) is recurrent, i.e., 1 ∈ ℱ𝑒 and ℰ(1,1) = 0, then the non-existence of non-constant
harmonic functions amounts to the equality

{𝑢 ∈ ℱ𝑒 | ℰ(𝑢, 𝑢) = 0} = R1. (1.1)

Ōshima [10, Theorem 3.1] proved (1.1) (and the completeness of (ℱ𝑒/R1, ℰ) as well)
for the Dirichlet form associated with a symmetric Hunt process which is recurrent in the
sense of Harris; note that the recurrence in the sense of Harris is stronger than the usual
recurrence of the associated Dirichlet form. Fukushima and Takeda [7, Theorem 4.2.4] (see
also [2, Theorem 2.1.11]) showed (1.1) for irreducible recurrent symmetric Dirichlet forms
(ℰ ,ℱ) under the (only) additional assumption that 𝑚(𝐸) < ∞. In the recent book [2],
Chen and Fukushima has extended this result to the case of 𝑚(𝐸) = ∞ when (ℰ ,ℱ) is
regular, by using the theory of random time changes of Dirichlet spaces. As part of our
main theorem, we generalize (1.1) to any irreducible recurrent symmetric Dirichlet form.
In fact, this generalization could be obtained (at least when 𝐿2(𝐸,𝑚) is separable) also by
applying the theory of regular representations of Dirichlet spaces (see [6, Section A.4]) to
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reduce the proof to the case where (ℰ ,ℱ) is regular. The advantage of our proof is that it
is based on totally elementary analytic arguments and is free from any use of time changes
or regular representations of Dirichlet spaces.

Here is the statement of our main theorem. See [2, Section 1.1] or [4, Section 1] for
basics on ℱ𝑒, and [6, Sections 1.5 and 1.6] or [2, Section 2.1] for details about irreducibility
and recurrence of (ℰ ,ℱ). We remark that ℱ𝑒 ⊂

⋂︀
𝑡∈(0,∞) 𝒟[𝑇𝑡] by Lemma 2-(1) below. We

say that (𝐸,ℬ,𝑚) is non-trivial if and only if both 𝑚(𝐴) > 0 and 𝑚(𝐸 ∖ 𝐴) > 0 hold for
some 𝐴 ∈ ℬ, which is equivalent to the condition that 𝐿2(𝐸,𝑚) ̸⊂ R1 since (𝐸,ℬ,𝑚) is
assumed to be σ-finite.
Theorem 1. Consider the following six conditions.
1) (ℰ ,ℱ) is both irreducible and recurrent.
2) {𝑢 ∈ ℱ𝑒 | ℰ(𝑢, 𝑢) = 0} = R1.
3) {𝑢 ∈ ℱ𝑒 ∩ 𝐿∞

+ (𝐸,𝑚) | ℰ(𝑢, 𝑢) = 0} = {𝑐1 | 𝑐 ∈ [0,∞)}.
4) If 𝑢 ∈ ℱ𝑒 is ℰ-excessive in the wide sense then 𝑢 ∈ R1.
5) If 𝑢 ∈ 𝐿0

+(𝐸,𝑚) is ℰ-excessive then 𝑢 ∈ R1.
6) If 𝑢 ∈ ℱ𝑒 ∩ 𝐿∞

+ (𝐸,𝑚) is ℰ-excessive then 𝑢 ∈ R1.
The three conditions 1),2),3) are equivalent to each other and imply 4),5),6). If
(𝐸,ℬ,𝑚) is non-trivial, then the six conditions are all equivalent.

The organization of this paper is as follows. In Section 2, we prepare basic results
about the extended space ℱ𝑒 and ℰ-excessive functions, which are valid as long as (ℰ ,ℱ)
is a symmetric positivity preserving form. The key results there are Propositions 3 and 4,
which are essentially known but seem new in the present general framework. Furthermore
Proposition 4 provides a characterization of the notion of ℰ-excessive functions in terms of
ℱ𝑒 and ℰ . Making use of these two propositions, we show Theorem 1 in Section 3.

2. Preliminaries: the extended (Dirichlet) space and excessive functions

As noted in the previous section, we fix a σ-finite measure space (𝐸,ℬ,𝑚) throughout
this paper, and all ℬ-measurable functions are assumed to be [−∞,∞]-valued. Note that by
the σ-finiteness of (𝐸,ℬ,𝑚) we can take η ∈ 𝐿1(𝐸,𝑚)∩𝐿∞(𝐸,𝑚) such that η > 0 𝑚-a.e.
Notation. (0) We follow the convention that N = {1, 2, 3, . . . }, i.e., 0 ̸∈ N.
(1) For 𝑎, 𝑏 ∈ [−∞,∞], we write 𝑎 ∨ 𝑏 := max{𝑎, 𝑏}, 𝑎 ∧ 𝑏 := min{𝑎, 𝑏}, 𝑎+ := 𝑎 ∨ 0 and
𝑎− := −(𝑎 ∧ 0). For {𝑎𝑛}𝑛∈N ⊂ [−∞,∞] and 𝑎 ∈ [−∞,∞], we write 𝑎𝑛 ↑ 𝑎 (resp. 𝑎𝑛 ↓ 𝑎)
if and only if {𝑎𝑛}𝑛∈N is non-decreasing (resp. non-increasing) and lim𝑛→∞ 𝑎𝑛 = 𝑎. We use
the same notation also for (𝑚-equivalence classes of) [−∞,∞]-valued functions.
(2) As introduced before Definition 1, identifying any two ℬ-measurable functions that are
equal 𝑚-a.e., we set 𝐿+(𝐸,𝑚) := {𝑓 | 𝑓 : 𝐸 → [0,∞], 𝑓 is ℬ-measurable}, 𝐿0(𝐸,𝑚) :=
:= {𝑓 | 𝑓 : 𝐸 → R, 𝑓 is ℬ-measurable} and 𝐿𝑝

+(𝐸,𝑚) := 𝐿𝑝(𝐸,𝑚) ∩ 𝐿+(𝐸,𝑚), 𝑝 ∈
∈ [1,∞] ∪ {0}. We regard R1 := {𝑐1 | 𝑐 ∈ R} as a linear subspace of 𝐿0(𝐸,𝑚). Let
‖ · ‖𝑝 denote the norm of 𝐿𝑝(𝐸,𝑚) for 𝑝 ∈ [1,∞]. Finally, let ⟨𝑓, 𝑔⟩ :=

∫︀
𝐸 𝑓𝑔 𝑑𝑚 for

𝑓, 𝑔 ∈ 𝐿+(𝐸,𝑚) and also for 𝑓, 𝑔 ∈ 𝐿0(𝐸,𝑚) with 𝑓𝑔 ∈ 𝐿1(𝐸,𝑚).
Recall the following definitions regarding bounded linear operators on 𝐿2(𝐸,𝑚).

Definition 2. Let 𝑇 : 𝐿2(𝐸,𝑚) → 𝐿2(𝐸,𝑚) be a bounded linear operator on 𝐿2(𝐸,𝑚).
(1) 𝑇 is called positivity preserving if and only if 𝑇𝑓 ≥ 0 𝑚-a.e. for any 𝑓 ∈ 𝐿2

+(𝐸,𝑚).
(2) 𝑇 is called Markovian if and only if 0 ≤ 𝑇𝑓 ≤ 1 𝑚-a.e. for any 𝑓 ∈ 𝐿2(𝐸,𝑚) with
0 ≤ 𝑓 ≤ 1 𝑚-a.e.
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Clearly, if 𝑇 is positivity preserving then so is its adjoint 𝑇 *. Note that if 𝑇 is
Markovian, then it is positivity preserving, ‖𝑇𝑓‖∞ ≤ ‖𝑓‖∞ for any 𝐿2(𝐸,𝑚) ∩ 𝐿∞(𝐸,𝑚)
and ‖𝑇 *𝑓‖1 ≤ ‖𝑓‖1 for any 𝑓 ∈ 𝐿1(𝐸,𝑚) ∩ 𝐿2(𝐸,𝑚). Moreover, using the σ-finiteness of
(𝐸,ℬ,𝑚), we easily have the following proposition.

Proposition 1. Let 𝑇 : 𝐿2(𝐸,𝑚) → 𝐿2(𝐸,𝑚) be a positivity preserving bounded linear
operator on 𝐿2(𝐸,𝑚).
(1) 𝑇 |𝐿2

+(𝐸,𝑚) uniquely extends to a map 𝑇 : 𝐿+(𝐸,𝑚) → 𝐿+(𝐸,𝑚) such that 𝑇𝑓𝑛 ↑ 𝑇𝑓

𝑚-a.e. for any 𝑓 ∈ 𝐿+(𝐸,𝑚) and any {𝑓𝑛}𝑛∈N ⊂ 𝐿+(𝐸,𝑚) with 𝑓𝑛 ↑ 𝑓 𝑚-a.e. Moreover,
let 𝑓, 𝑔 ∈ 𝐿+(𝐸,𝑚) and 𝑎 ∈ [0,∞]. Then 𝑇 (𝑓 + 𝑔) = 𝑇𝑓 + 𝑇𝑔, 𝑇 (𝑎𝑓) = 𝑎𝑇𝑓 , ⟨𝑇𝑓, 𝑔⟩ =
= ⟨𝑓, 𝑇 *𝑔⟩, and if 𝑓 ≤ 𝑔 𝑚-a.e. then 𝑇𝑓 ≤ 𝑇𝑔 𝑚-a.e.
(2) Let 𝒟[𝑇 ] := {𝑓 ∈ 𝐿0(𝐸,𝑚) | 𝑇 |𝑓 | < ∞ 𝑚-a.e.}. Then 𝑇 : 𝐿2(𝐸,𝑚) → 𝐿2(𝐸,𝑚)
is extended to a linear operator 𝑇 : 𝒟[𝑇 ] → 𝐿0(𝐸,𝑚) given by 𝑇𝑓 := 𝑇 (𝑓+) − 𝑇 (𝑓−),
𝑓 ∈ 𝒟[𝑇 ], so that it has the following properties:
(i) If 𝑓, 𝑔 ∈ 𝒟[𝑇 ] and 𝑓 ≤ 𝑔 𝑚-a.e. then 𝑇𝑓 ≤ 𝑇𝑔 𝑚-a.e.
(ii) If {𝑓𝑛}𝑛∈N ⊂ 𝒟[𝑇 ] and 𝑓, 𝑔 ∈ 𝒟[𝑇 ] satisfy lim𝑛→∞ 𝑓𝑛 = 𝑓 𝑚-a.e. and |𝑓𝑛| ≤ |𝑔| 𝑚-a.e.
for any 𝑛 ∈ N, then lim𝑛→∞ 𝑇𝑓𝑛 = 𝑇𝑓 𝑚-a.e.

Throughout the rest of this paper, we fix a closed symmetric form (ℰ ,ℱ) on 𝐿2(𝐸,𝑚)
together with its associated symmetric strongly continuous contraction semigroup {𝑇𝑡}𝑡∈(0,∞)

and resolvent {𝐺α}α∈(0,∞) on 𝐿2(𝐸,𝑚); see [6, Chapter 1.3] for basics on closed symmetric
forms on Hilbert spaces and their associated semigroups and resolvents.

Let us further recall the following definition.

Definition 3. (1) (ℰ ,ℱ) is called a positivity preserving form if and only if 𝑢+ ∈ ℱ and
ℰ(𝑢+, 𝑢+) ≤ ℰ(𝑢, 𝑢) for any 𝑢 ∈ ℱ , or equivalently, 𝑇𝑡 is positivity preserving for any
𝑡 ∈ (0,∞).
(2) (ℰ ,ℱ) is called a Dirichlet form if and only if 𝑢+∧1 ∈ ℱ and ℰ(𝑢+∧1, 𝑢+∧1) ≤ ℰ(𝑢, 𝑢)
for any 𝑢 ∈ ℱ , or equivalently, 𝑇𝑡 is Markovian for any 𝑡 ∈ (0,∞).

See, e.g., [11, Section 2] for the equivalences stated in Definition 3.
In the rest of this section, we assume that (ℰ ,ℱ) is a positivity preserving form. The

following definition is standard (see [12, Definition 3], [2, Definition 1.1.4] or [4, Definition
1.4]).

Definition 4. We define the extended space ℱ𝑒 associated with (ℰ ,ℱ) by

ℱ𝑒 :=

{︂
𝑢 ∈ 𝐿0(𝐸,𝑚)

⃒⃒⃒⃒
lim𝑛→∞ 𝑢𝑛 = 𝑢 𝑚-a.e. for some {𝑢𝑛}𝑛∈N ⊂ ℱ
with lim𝑘∧ℓ→∞ ℰ(𝑢𝑘 − 𝑢ℓ, 𝑢𝑘 − 𝑢ℓ) = 0

}︂
. (2.1)

For 𝑢 ∈ ℱ𝑒, such {𝑢𝑛}𝑛∈N ⊂ ℱ as in (2.1) is called an approximating sequence for 𝑢. When
(ℰ ,ℱ) is a Dirichlet form, ℱ𝑒 is called the extended Dirichlet space associated with (ℰ ,ℱ).

Obviously ℱ ⊂ ℱ𝑒 and ℱ𝑒 is a linear subspace of 𝐿0(𝐸,𝑚). By virtue of [13, Proposi-
tion 2], ℱ = ℱ𝑒 ∩ 𝐿2(𝐸,𝑚), and for 𝑢, 𝑣 ∈ ℱ𝑒 with approximating sequences {𝑢𝑛}𝑛∈N and
{𝑣𝑛}𝑛∈N, respectively, the limit lim𝑛→∞ ℰ(𝑢𝑛, 𝑣𝑛) ∈ R exists and is independent of partic-
ular choices of {𝑢𝑛}𝑛∈N and {𝑣𝑛}𝑛∈N, as discussed in [12, before Definition 3]. By setting
ℰ(𝑢, 𝑣) := lim𝑛→∞ ℰ(𝑢𝑛, 𝑣𝑛), ℰ is extended to a non-negative definite symmetric bilinear
form on ℱ𝑒. Then it is easy to see that lim𝑛→∞ ℰ(𝑢 − 𝑢𝑛, 𝑢 − 𝑢𝑛) = 0 for 𝑢 ∈ ℱ𝑒 and any
approximating sequence {𝑢𝑛}𝑛∈N ⊂ ℱ for 𝑢. Moreover, we have the following proposition
due to Schmuland [12], which is easily proved by utilizing a version [2, Theorem A.4.1-(ii)]
of the Banach — Saks theorem.
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Proposition 2 ([12, Lemma 2]). Let 𝑢 ∈ 𝐿0(𝐸,𝑚) and {𝑢𝑛}𝑛∈N ⊂ ℱ satisfy lim𝑛→∞ 𝑢𝑛 =
= 𝑢 𝑚-a.e. and lim inf𝑛→∞ ℰ(𝑢𝑛, 𝑢𝑛) < ∞. Then 𝑢 ∈ ℱ𝑒, ℰ(𝑢, 𝑢) ≤ lim inf𝑛→∞ ℰ(𝑢𝑛, 𝑢𝑛),
and lim inf𝑛→∞ ℰ(𝑢𝑛, 𝑣) ≤ ℰ(𝑢, 𝑣) ≤ lim sup𝑛→∞ ℰ(𝑢𝑛, 𝑣) for any 𝑣 ∈ ℱ𝑒.

In particular, we easily see from Proposition 2 that 𝑢+ ∈ ℱ𝑒 and ℰ(𝑢+, 𝑢+) ≤ ℰ(𝑢, 𝑢)
for any 𝑢 ∈ ℱ𝑒.

Remark 2. For symmetric Dirichlet forms, the properties of ℱ𝑒 stated above are well-known
and most of them are proved in the textbooks [2, Section 1.1] and [7, Section 4.1] and also
in [4, Section 1]. In fact, we can verify similar results in a quite general setting; see
Schmuland [12] for details.

The next proposition (Proposition 3 below) requires the following lemmas.
Lemma 1. Let η ∈ 𝐿1(𝐸,𝑚) ∩ 𝐿2(𝐸,𝑚) be such that η > 0 𝑚-a.e., and set ‖𝑢‖ℱ𝑒 :=
:= ℰ(𝑢, 𝑢)1/2 +

∫︀
𝐸(|𝑢| ∧ 1)η 𝑑𝑚 for 𝑢 ∈ ℱ𝑒. Then we have the following assertions:

(1) ‖𝑢 + 𝑣‖ℱ𝑒 ≤ ‖𝑢‖ℱ𝑒 + ‖𝑣‖ℱ𝑒 and ‖𝑎𝑢‖ℱ𝑒 ≤ (|𝑎| ∨ 1)‖𝑢‖ℱ𝑒 for any 𝑢, 𝑣 ∈ ℱ𝑒 and any
𝑎 ∈ R.
(2) ℱ𝑒 is a complete metric space under the metric 𝑑ℱ𝑒 given by 𝑑ℱ𝑒(𝑢, 𝑣) := ‖𝑢− 𝑣‖ℱ𝑒 .

Proof. (1) is immediate and 𝑑ℱ𝑒 is clearly a metric on ℱ𝑒. For the proof of its completeness,
let {𝑢𝑛}𝑛∈N ⊂ ℱ𝑒 be a Cauchy sequence in (ℱ𝑒, 𝑑ℱ𝑒). Noting that ℱ is dense in (ℱ𝑒, 𝑑ℱ𝑒),
for each 𝑛 ∈ N take 𝑣𝑛 ∈ ℱ such that ‖𝑣𝑛 − 𝑢𝑛‖ℱ𝑒 ≤ 𝑛−1. Then {𝑣𝑛}𝑛∈N is also a Cauchy
sequence in (ℱ𝑒, 𝑑ℱ𝑒). A Borel-Cantelli argument easily yields a subsequence {𝑣𝑛𝑘

}𝑘∈N
of {𝑣𝑛}𝑛∈N converging 𝑚-a.e. to some 𝑢 ∈ 𝐿0(𝐸,𝑚), which means that 𝑢 ∈ ℱ𝑒 with
approximating sequence {𝑣𝑛𝑘

}𝑘∈N and hence that lim𝑘→∞ ‖𝑢 − 𝑣𝑛𝑘
‖ℱ𝑒 = 0. The same

argument also implies that every subsequence of {𝑣𝑛}𝑛∈N admits a further subsequence
converging to 𝑢 in (ℱ𝑒, 𝑑ℱ𝑒), from which lim𝑛→∞ ‖𝑢−𝑣𝑛‖ℱ𝑒 = 0 follows. Thus lim𝑛→∞ ‖𝑢−
− 𝑢𝑛‖ℱ𝑒 = 0.

Lemma 2. (1) ℱ𝑒 ⊂
⋂︀

𝑡∈(0,∞) 𝒟[𝑇𝑡] and 𝑇𝑡(ℱ𝑒) ⊂ ℱ𝑒 for any 𝑡 ∈ (0,∞).
(2) Let η and ‖ · ‖ℱ𝑒 be as in Lemma 1, and let 𝑢 ∈ ℱ𝑒. Then ℰ(𝑇𝑡𝑢, 𝑇𝑡𝑢) ≤ ℰ(𝑢, 𝑢),
‖𝑢−𝑇𝑡𝑢‖22 ≤ 𝑡ℰ(𝑢, 𝑢) and ‖𝑇𝑡𝑢‖ℱ𝑒 ≤ (3+‖η‖2

√
𝑡)‖𝑢‖ℱ𝑒 for any 𝑡 ∈ (0,∞), 𝑇𝑠𝑇𝑡𝑢 = 𝑇𝑠+𝑡𝑢

for any 𝑠, 𝑡 ∈ (0,∞), and lim𝑡↓0 ‖𝑢− 𝑇𝑡𝑢‖ℱ𝑒 = 0.

Proof. Let η, ‖ · ‖ℱ𝑒 and 𝑑ℱ𝑒 be as in Lemma 1. First we prove (2) for 𝑢 ∈ ℱ . The
fourth assertion is clear. 𝑇𝑡𝑢 ∈ ℱ and ℰ(𝑇𝑡𝑢, 𝑇𝑡𝑢) ≤ ℰ(𝑢, 𝑢) for 𝑡 ∈ (0,∞) by [6, Lemma
1.3.3-(i)], and lim𝑡↓0 ‖𝑢 − 𝑇𝑡𝑢‖ℱ𝑒 = 0 by [6, Lemma 1.3.3-(iii)]. Let 𝑡 ∈ (0,∞). Noting
that ⟨𝑓 − 𝑇𝑡𝑓, 𝑇𝑡𝑓⟩ = ‖𝑇𝑡/2𝑓‖22 −‖𝑇𝑡𝑓‖22 ≥ 0 for 𝑓 ∈ 𝐿2(𝐸,𝑚), we have ‖𝑢− 𝑇𝑡𝑢‖22 = ⟨𝑢−
− 𝑇𝑡𝑢, 𝑢⟩ − ⟨𝑢 − 𝑇𝑡𝑢, 𝑇𝑡𝑢⟩ ≤ ⟨𝑢 − 𝑇𝑡𝑢, 𝑢⟩ ≤ 𝑡ℰ(𝑢, 𝑢) by [6, Lemma 1.3.4-(i)]. Applying
these estimates to ‖𝑢− 𝑇𝑡𝑢‖ℱ𝑒 ≤ ℰ(𝑢, 𝑢)1/2 + ℰ(𝑇𝑡𝑢, 𝑇𝑡𝑢)

1/2 + ‖η‖2‖𝑢− 𝑇𝑡𝑢‖2 easily yields
‖𝑇𝑡𝑢‖ℱ𝑒 ≤ (3 + ‖η‖2

√
𝑡)‖𝑢‖ℱ𝑒 .

Now since ℱ is dense in a complete metric space (ℱ𝑒, 𝑑ℱ𝑒), it follows from the previous
paragraph that 𝑇𝑡|ℱ is uniquely extended to a continuous map 𝑇 𝑒

𝑡 from (ℱ𝑒, 𝑑ℱ𝑒) to itself,
and then clearly 𝑇 𝑒

𝑡 is linear and the assertions of (2) are true with 𝑇 𝑒
𝑡 in place of 𝑇𝑡.

Let 𝑡 ∈ (0,∞) and 𝑢 ∈ ℱ𝑒 ∩𝐿+(𝐸,𝑚). It remains to show 𝑇 𝑒
𝑡 𝑢 = 𝑇𝑡𝑢, as 𝑣+, 𝑣− ∈ ℱ𝑒

for 𝑣 ∈ ℱ𝑒. Since 𝑣+ ∧ 𝑢 ∈ ℱ𝑒 ∩ 𝐿2(𝐸,𝑚) = ℱ and ℰ(𝑣+ ∧ 𝑢, 𝑣+ ∧ 𝑢)1/2 ≤ ℰ(𝑣, 𝑣)1/2 +
+ ℰ(𝑢, 𝑢)1/2 for any 𝑣 ∈ ℱ by the positivity preserving property of (ℰ ,ℱ), an application of
the Banach-Saks theorem [2, Theorem A.4.1-(ii)] assures the existence of an approximating
sequence {𝑤𝑛}𝑛∈N for 𝑢 such that 0 ≤ 𝑤𝑛 ≤ 𝑢 𝑚-a.e. A Borel — Cantelli argument yields
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a subsequence {𝑤𝑛𝑘
}𝑘∈N such that lim𝑘→∞ 𝑇𝑡𝑤𝑛𝑘

= 𝑇 𝑒
𝑡 𝑢 𝑚-a.e., and 𝑇 𝑒

𝑡 𝑢 = 𝑇𝑡𝑢 follows by
letting 𝑘 → ∞ in 𝑇𝑡(inf𝑗≥𝑘 𝑤𝑛𝑗

) ≤ 𝑇𝑡𝑤𝑛𝑘
≤ 𝑇𝑡𝑢 𝑚-a.e.

The following proposition (Proposition 3), which seems new in spite of its easiness,
plays an essential role in the proof of 1) ⇒ 2) of Theorem 1. Proposition 3-(2) is an
extension of a result of Chen and Kuwae [3, Lemma 3.1] for functions in ℱ to those in ℱ𝑒,
and Proposition 3-(3) extends a basic fact for functions in ℱ to those in ℱ𝑒.
Proposition 3. (1) Let 𝑢 ∈ ℱ𝑒 and 𝑣 ∈ ℱ . Then

lim
𝑡↓0

1

𝑡
⟨𝑢− 𝑇𝑡𝑢, 𝑣⟩ = ℰ(𝑢, 𝑣) and ⟨𝑢− 𝑇𝑡𝑢, 𝑣⟩ =

∫︁ 𝑡

0

ℰ(𝑢, 𝑇𝑠𝑣)𝑑𝑠, 𝑡 ∈ (0,∞). (2.2)

(2) Let 𝑢 ∈ ℱ𝑒. Then 𝑢 is ℰ-excessive in the wide sense if and only if ℰ(𝑢, 𝑣) ≥ 0 for any
𝑣 ∈ ℱ ∩ 𝐿+(𝐸,𝑚), or equivalently, for any 𝑣 ∈ ℱ𝑒 ∩ 𝐿+(𝐸,𝑚).
(3) Let 𝑢 ∈ ℱ𝑒. Then 𝑇𝑡𝑢 = 𝑢 for any 𝑡 ∈ (0,∞) if and only if ℰ(𝑢, 𝑢) = 0.

Proof. (1) Let 𝑢 ∈ ℱ𝑒, 𝑣 ∈ ℱ and set ϕ(𝑡) := ⟨𝑢− 𝑇𝑡𝑢, 𝑣⟩ for 𝑡 ∈ [0,∞), where 𝑇0𝑢 := 𝑢.
Then 𝑡−1|ϕ(𝑡)| ≤ ℰ(𝑢, 𝑢)1/2ℰ(𝑣, 𝑣)1/2 for 𝑡 ∈ (0,∞) and lim𝑡↓0 𝑡

−1ϕ(𝑡) = ℰ(𝑢, 𝑣) if 𝑢 ∈ ℱ
by [6, Lemma 1.3.4-(i)], and the same are true for 𝑢 ∈ ℱ𝑒 as well by Lemma 2. Using
Lemma 2, we easily see also that ϕ′(𝑡) = ℰ(𝑢, 𝑇𝑡𝑣) for 𝑡 ∈ [0,∞) and that ϕ′ is continuous
on [0,∞), proving (2.2).
(2) The third assertion of Proposition 2 together with the positivity preserving property of
(ℰ ,ℱ) easily implies that ℰ(𝑢, 𝑣) ≥ 0 for any 𝑣 ∈ ℱ ∩ 𝐿+(𝐸,𝑚) if and only if the same is
true for any 𝑣 ∈ ℱ𝑒 ∩ 𝐿+(𝐸,𝑚). The rest of the assertion is immediate from (2.2).
(3) This is an immediate consequence of (2).

The next proposition (Proposition 4), which characterizes the notion of ℰ-excessive
functions in terms of ℱ𝑒 and ℰ , is of independent interest. The proof is based on a result
[11, Corollary 2.4] of Ouhabaz which provides a characterization of invariance of closed
convex sets for semigroups on Hilbert spaces. A similar argument in a more general
framework can be found in Shigekawa [14].
Proposition 4. Let 𝑢 ∈ 𝐿+(𝐸,𝑚). Then 𝑢 is ℰ-excessive if and only if 𝑣 ∧ 𝑢 ∈ ℱ𝑒 and
ℰ(𝑣 ∧ 𝑢, 𝑣 ∧ 𝑢) ≤ ℰ(𝑣, 𝑣) for any 𝑣 ∈ ℱ𝑒.
1. The notion of ℰ-excessive functions is determined solely by the pair (ℱ𝑒, ℰ) of the

extended space ℱ𝑒 and the form ℰ : ℱ𝑒 ×ℱ𝑒 → R.
2. Let 𝑢 ∈ 𝐿+(𝐸,𝑚) be ℰ-excessive and 𝑣 ∈ ℱ𝑒. Suppose 𝑢 ≤ 𝑣 𝑚-a.e. Then 𝑢 ∈ ℱ𝑒

and ℰ(𝑢, 𝑢) ≤ ℰ(𝑣, 𝑣).

Remark 3. Chen and Kuwae [3, Lemma 3.3] gave a probabilistic proof of Corollary 2 for
the Dirichlet forms associated with symmetric right Markov processes.

Proof of Proposition 4. Let 𝐾𝑢 := {𝑓 ∈ 𝐿2(𝐸,𝑚) | 𝑓 ≤ 𝑢 𝑚-a.e.}, which is clearly a
closed convex subset of 𝐿2(𝐸,𝑚). We claim that

𝑢 is ℰ-excessive if and only if 𝑇𝑡(𝐾𝑢) ⊂ 𝐾𝑢 for any 𝑡 ∈ (0,∞). (2.3)

Indeed, let 𝑡 ∈ (0,∞). If 𝑇𝑡𝑢 ≤ 𝑢 𝑚-a.e. then 𝑇𝑡𝑓 ≤ 𝑇𝑡𝑢 ≤ 𝑢 𝑚-a.e. for any 𝑓 ∈ 𝐾𝑢 and
hence 𝑇𝑡(𝐾𝑢) ⊂ 𝐾𝑢. Conversely if 𝑇𝑡(𝐾𝑢) ⊂ 𝐾𝑢, then choosing η ∈ 𝐿2(𝐸,𝑚) so that η > 0
𝑚-a.e., we have (𝑛η)∧𝑢 ↑ 𝑢 𝑚-a.e., (𝑛η)∧𝑢 ∈ 𝐾𝑢 and hence 𝑇𝑡𝑢 = lim𝑛→∞ 𝑇𝑡((𝑛η)∧𝑢) ≤ 𝑢
𝑚-a.e.
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On the other hand, since the projection of 𝑓 ∈ 𝐿2(𝐸,𝑚) on 𝐾𝑢 is given by 𝑓 ∧ 𝑢,
[11, Corollary 2.4] tells us that 𝑇𝑡(𝐾𝑢) ⊂ 𝐾𝑢 for any 𝑡 ∈ (0,∞) if and only if

𝑣 ∧ 𝑢 ∈ ℱ and ℰ(𝑣 ∧ 𝑢, 𝑣 ∧ 𝑢) ≤ ℰ(𝑣, 𝑣) for any 𝑣 ∈ ℱ . (2.4)

Finally, ℱ𝑒 ∩ 𝐿2(𝐸,𝑚) = ℱ and Proposition 2 easily imply that (2.4) is equivalent to the
same condition with ℱ𝑒 in place of ℱ , completing the proof.

3. Proof of Theorem 1

We are now ready for the proof of Theorem 1. We assume throughout this section
that our closed symmetric form (ℰ ,ℱ) is a Dirichlet form. The proof consists of three
steps. The first one is Proposition 5 below, which establishes 1) ⇒ 2) of Theorem 1 and
whose proof makes full use of Proposition 3-(3). Recall the following notions concerning the
irreducibility of (ℰ ,ℱ); see [6, Section 1.6] or [2, Section 2.1] for details.
Definition 5. (1) A set 𝐴 ∈ ℬ is called ℰ-invariant if and only if 1𝐴𝑇𝑡(𝑓1𝐸∖𝐴) = 0 𝑚-a.e.
for any 𝑓 ∈ 𝐿2(𝐸,𝑚) and any 𝑡 ∈ (0,∞).
(2) (ℰ ,ℱ) is called irreducible if and only if either 𝑚(𝐴) = 0 or 𝑚(𝐸 ∖ 𝐴) = 0 holds for
any ℰ-invariant 𝐴 ∈ ℬ.
Lemma 3. Let 𝑢 ∈ 𝐿+(𝐸,𝑚) be ℰ-excessive. Then {𝑢 = 0} is ℰ-invariant.

Proof. In fact, the following proof is valid as long as (ℰ ,ℱ) is a symmetric positivity
preserving form. Let 𝐵 := {𝑢 = 0}, 𝑓 ∈ 𝐿2(𝐸,𝑚) and set 𝑓𝑛 := |𝑓 | ∧ (𝑛𝑢) for 𝑛 ∈ N,
so that 𝑓𝑛 ↑ |𝑓 |1𝐸∖𝐵 𝑚-a.e. Then 0 ≤ 1𝐵𝑇𝑡𝑓𝑛 ≤ 1𝐵𝑇𝑡(𝑛𝑢) ≤ 𝑛1𝐵𝑢 = 0 𝑚-a.e., and
letting 𝑛 → ∞ leads to |1𝐵𝑇𝑡(𝑓1𝐸∖𝐵)| ≤ 1𝐵𝑇𝑡(|𝑓 |1𝐸∖𝐵) = 0 𝑚-a.e. Thus 𝐵 = {𝑢 = 0} is
ℰ-invariant.

Proposition 5. Suppose that (ℰ ,ℱ) is irreducible. If 𝑢 ∈ ℱ𝑒 and ℰ(𝑢, 𝑢) = 0 then 𝑢 ∈ R1.

Proof. We follow [2, Proof of Theorem 2.1.11, (i)⇒ (ii)]. Let 𝑢 ∈ ℱ𝑒 satisfy ℰ(𝑢, 𝑢) = 0.
We may assume that 𝑚({𝑢 > 0}) > 0. Let λ ∈ [0,∞) and 𝑢λ := 𝑢 − 𝑢 ∧ λ. Since (ℰ ,ℱ)
is assumed to be a Dirichlet form, 𝑢λ ∈ ℱ𝑒 ∩ 𝐿+(𝐸,𝑚) and ℰ(𝑢λ, 𝑢λ) = 0 (see Proposition
4), and therefore 𝑇𝑡𝑢λ = 𝑢λ for any 𝑡 ∈ (0,∞) by Proposition 3-(3). Then {𝑢λ = 0} is
ℰ-invariant by Lemma 3, and the irreducibility of (ℰ ,ℱ) implies that either 𝑚({𝑢λ = 0}) = 0
or 𝑚({𝑢λ > 0}) = 0 holds. Now setting κ := sup{λ ∈ [0,∞) | 𝑚({𝑢λ = 0}) = 0}, we
easily see that κ ∈ (0,∞) and that 𝑢 = κ 𝑚-a.e.

For the rest of the proof of Theorem 1, let us recall basic notions concerning recurrence
and transience of Dirichlet forms. See [6, Sections 1.5 and 1.6] or [2, Section 2.1] for
details. For 𝑡 ∈ (0,∞), we define 𝑆𝑡 : 𝐿

2(𝐸,𝑚) → 𝐿2(𝐸,𝑚) by 𝑆𝑡𝑓 :=
∫︀ 𝑡

0 𝑇𝑠𝑓 𝑑𝑠, where
the integral is the Riemann integral in 𝐿2(𝐸,𝑚). Then 𝑡−1𝑆𝑡 is a Markovian symmetric
bounded linear operator on 𝐿2(𝐸,𝑚), and therefore it is canonically extended to an operator
on 𝐿+(𝐸,𝑚) by Proposition 1. Furthermore, for any 𝑠, 𝑡 ∈ (0,∞) we easily see that
𝑆𝑠+𝑡 = 𝑆𝑠 + 𝑇𝑠𝑆𝑡 = 𝑆𝑠 + 𝑆𝑡𝑇𝑠 as operators on 𝐿+(𝐸,𝑚) or on 𝐿2(𝐸,𝑚).

Let 𝑓 ∈ 𝐿+(𝐸,𝑚). Then 0 ≤ 𝑆𝑠𝑓 ≤ 𝑆𝑡𝑓 𝑚-a.e. and 0 ≤ 𝐺β𝑓 ≤ 𝐺α𝑓 𝑚-a.e. for
0 < 𝑠 < 𝑡, 0 < α < β. Therefore there exists a unique 𝐺𝑓 ∈ 𝐿+(𝐸,𝑚) satisfying
𝑆𝑁𝑓 ↑ 𝐺𝑓 𝑚-a.e. It is immediate that 𝐺𝑓𝑛 ↑ 𝐺𝑓 𝑚-a.e. for any {𝑓𝑛}𝑛∈N ⊂ 𝐿+(𝐸,𝑚) with
𝑓𝑛 ↑ 𝑓 𝑚-a.e. Since, on 𝐿2(𝐸,𝑚), {𝐺α}α∈(0,∞) is the Laplace transform of {𝑇𝑡}𝑡∈(0,∞), we
see that 𝑆𝑡𝑛𝑓 ↑ 𝐺𝑓 𝑚-a.e. and 𝐺α𝑛𝑓 ↑ 𝐺𝑓 𝑚-a.e. for any {𝑡𝑛}𝑛∈N, {α𝑛}𝑛∈N ⊂ (0,∞) with
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𝑡𝑛 ↑ ∞, α𝑛 ↓ 0. Moreover, since 𝑆𝑡+𝑁𝑓 = 𝑆𝑡𝑓 + 𝑇𝑡𝑆𝑁𝑓 ≥ 𝑇𝑡𝑆𝑁𝑓 𝑚-a.e. for 𝑡 ∈ (0,∞) and
𝑁 ∈ N, by letting 𝑁 → ∞ we have 𝑇𝑡𝐺𝑓 ≤ 𝐺𝑓 𝑚-a.e., that is, 𝐺𝑓 is ℰ-excessive. We call
this operator 𝐺 : 𝐿+(𝐸,𝑚) → 𝐿+(𝐸,𝑚) the 0-resolvent associated with (ℰ ,ℱ).

Definition 6 (Transience and Recurrence). (1) (ℰ ,ℱ) is called transient if and only if
𝐺𝑓 < ∞ 𝑚-a.e. for some 𝑓 ∈ 𝐿+(𝐸,𝑚) with 𝑓 > 0 𝑚-a.e.
(2) (ℰ ,ℱ) is called recurrent if and only if 𝑚({0 < 𝐺𝑓 < ∞}) = 0 for any 𝑓 ∈ 𝐿+(𝐸,𝑚).

By [6, Lemma 1.5.1], (ℰ ,ℱ) is transient if and only if 𝐺𝑓 < ∞ 𝑚-a.e. for any
𝑓 ∈ 𝐿1

+(𝐸,𝑚). On the other hand, by [6, Theorem 1.6.3], (ℰ ,ℱ) is recurrent if and only if
1 ∈ ℱ𝑒 and ℰ(1,1) = 0.

The following proposition is the second step of the proof of Theorem 1.

Proposition 6. Assume that (ℰ ,ℱ) is recurrent. If 𝑢 ∈ 𝐿0
+(𝐸,𝑚) is ℰ-excessive then

𝑢 ∈ ℱ𝑒 and ℰ(𝑢, 𝑢) = 0.

Proof. Let 𝑛 ∈ N. Then 𝑢∧𝑛 ≤ 𝑛1 𝑚-a.e., 𝑛1 ∈ ℱ𝑒 and ℰ(𝑛1, 𝑛1) = 0 by the recurrence of
(ℰ ,ℱ), and 𝑢∧𝑛 is ℰ-excessive since so are 𝑢 and 1. Thus 𝑢∧𝑛 ∈ ℱ𝑒 and ℰ(𝑢∧𝑛, 𝑢∧𝑛) = 0
by Corollary 2. Lemma 1-(2) implies that lim𝑛→∞ ‖𝑣 − 𝑢 ∧ 𝑛‖ℱ𝑒 = 0 for some 𝑣 ∈ ℱ𝑒 with
‖ · ‖ℱ𝑒 as defined there, and then we easily have 𝑢 = 𝑣 ∈ ℱ𝑒 and ℰ(𝑢, 𝑢) = 0.

As the third step, now we finish the proof of Theorem 1.

Proof of Theorem 1. 1) ⇒ 2) follows by Proposition 5, and so does 1) ⇒ 5) by Propositions
5 and 6. 2) ⇒ 3), 4) ⇒ 6) and 5) ⇒ 6) are trivial.

1) ⇒ 4): Let 𝑢 ∈ ℱ𝑒 be ℰ-excessive in the wide sense, 𝑛 ∈ N and 𝑢𝑛 := 𝑢 ∧ 𝑛. Then
𝑢𝑛 ∈ ℱ𝑒, 𝑢𝑛 is also ℰ-excessive in the wide sense, 𝑛1 − 𝑢𝑛 ∈ ℱ𝑒 ∩ 𝐿+(𝐸,𝑚) and hence
ℰ(𝑢𝑛, 𝑢𝑛) = ℰ(𝑢𝑛, 𝑢𝑛 − 𝑛1) ≤ 0 by Proposition 3-(2). As in the proof of Proposition 6,
letting 𝑛 → ∞ we get ℰ(𝑢, 𝑢) = 0 by Lemma 1-(2), and hence 𝑢 ∈ R1 by Proposition 5.

3) ⇒ 1): (ℰ ,ℱ) is recurrent since 1 ∈ ℱ𝑒 and ℰ(1,1) = 0. Let 𝐴 ∈ ℬ be ℰ-invariant. Then
1𝐴 = 1𝐴1 ∈ ℱ𝑒 ∩ 𝐿∞

+ (𝐸,𝑚) and 0 ≤ ℰ(1𝐴,1𝐴) ≤ ℰ(1,1) = 0 by [6, Theorem 1.6.1]. Now
3) implies 1𝐴 ∈ R1, and hence either 𝑚(𝐴) = 0 or 𝑚(𝐸 ∖ 𝐴) = 0.

6) ⇒ 3) when (𝐸,ℬ,𝑚) is non-trivial: Choose 𝑔 ∈ 𝐿1(𝐸,𝑚) so that 𝑔 > 0 𝑚-a.e., and
set 𝐸𝑐 := {𝐺𝑔 = ∞}. Then 1𝐸𝑐 ∈ ℱ𝑒 ∩ 𝐿∞

+ (𝐸,𝑚) and ℰ(1𝐸𝑐 ,1𝐸𝑐) = 0 by [6, Corollary
1.6.2], and 6) together with Proposition 3-(3) implies 1𝐸𝑐 ∈ R1, i.e., either 𝑚(𝐸𝑐) = 0 or
𝑚(𝐸 ∖ 𝐸𝑐) = 0. In view of 6) and Proposition 3-(3), it suffices to show 𝑚(𝐸 ∖ 𝐸𝑐) = 0.

Suppose 𝑚(𝐸𝑐) = 0, so that (ℰ ,ℱ) is transient, and set η := 𝑔/(1∨𝐺𝑔). Then 0 < η ≤
≤ 𝑔 𝑚-a.e. and ⟨η, 𝐺η⟩ ≤ ⟨𝑔/(1∨𝐺𝑔), 𝐺𝑔⟩ ≤ ‖𝑔‖1 < ∞. Let 𝑓 ∈ 𝐿1

+(𝐸,𝑚)∩𝐿2(𝐸,𝑚) and
set 𝑓𝑛 := 𝑓∧(𝑛η) for 𝑛 ∈ N. Then 𝑓𝑛 ∈ 𝐿2

+(𝐸,𝑚), 𝐺𝑓𝑛 ≤ 𝑛𝐺η < ∞𝑚-a.e., ⟨𝑓𝑛, 𝐺𝑓𝑛⟩ < ∞
and 𝑓𝑛 ↑ 𝑓 𝑚-a.e. Since ℰ(𝐺α𝑓𝑛, 𝐺α𝑓𝑛) ≤ ⟨𝑓𝑛, 𝐺α𝑓𝑛⟩ ≤ ⟨𝑓𝑛, 𝐺𝑓𝑛⟩ < ∞ for α ∈ (0,∞),
Proposition 2 implies 𝐺𝑓𝑛 ∈ ℱ𝑒. Since 𝐺𝑓𝑛 is ℰ-excessive, so is 𝑛 ∧𝐺𝑓𝑛 ∈ ℱ𝑒 ∩ 𝐿∞

+ (𝐸,𝑚)
and 6) yields 𝑛 ∧𝐺𝑓𝑛 ∈ R1. Letting 𝑛 → ∞ and noting 𝐺𝑓 < ∞ 𝑚-a.e. by the transience
of (ℰ ,ℱ), we get 𝐺𝑓 ∈ R1. Let α ∈ (0,∞). Then 𝐺α𝑓 ∈ 𝐿1

+(𝐸,𝑚) ∩ 𝐿2(𝐸,𝑚) and
hence 𝐺𝐺α𝑓 ∈ R1. Letting 𝑛 → ∞ in 𝐺α𝑓 = 𝐺1/𝑛𝑓 − (α − 1/𝑛)𝐺1/𝑛𝐺α𝑓 implies that
𝐺α𝑓 = 𝐺𝑓 − α𝐺𝐺α𝑓 ∈ R1. Since α𝐺α𝑓 → 𝑓 in 𝐿2(𝐸,𝑚) as α → ∞, we conclude
that 𝐿1

+(𝐸,𝑚)∩𝐿2(𝐸,𝑚) ⊂ R1, contradicting the assumption that (𝐸,ℬ,𝑚) is non-trivial.
Thus 𝑚(𝐸 ∖ 𝐸𝑐) = 0 follows.
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ЭКВИВАЛЕНТНОСТЬ РЕКУРРЕНТНОСТИ И ЛИУВИЛЛЕВА СВОЙСТВА
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Аннотация. Рассмотрим симметричную форму Дирихле (ℰ ,ℱ) на σ-
конечном (нетривиальном) метрическом пространстве (𝐸,ℬ,𝑚) с ассоцииро-
ванной марковской полугруппой {𝑇𝑡}𝑡∈(0,∞). В работе доказано, что (ℰ ,ℱ)
несократимая и рекуррентная тогда и только тогда, когда не существует непо-
стоянной ℬ-измеримой и ℰ-эксцессивной функции 𝑢 : 𝐸 → [0,∞], то есть та-
кой, что 𝑇𝑡𝑢 ≤ 𝑢 𝑚-a.e. для всех 𝑡 ∈ (0,∞). Так же доказано, что эти условия
эквивалентны равенству {𝑢 ∈ ℱ𝑒 | ℰ(𝑢, 𝑢) = 0} = R1, где ℱ𝑒 означает рас-
ширенное пространство Дирихле, ассоциированное с (ℰ ,ℱ). Доказательство
чисто аналитическое и не требует дополнительных ограничений на фазовое
пространство и форму. В процессе доказательства так же представлена ха-
рактеристика ℰ-эксцессивности в терминах ℱ𝑒 и ℰ , которая справедлива для
любой симметричной формы, сохраняющей положительность.

Ключевые слова: симметричные формы Дирихле; симметричные формы,
сохраняющие положительность; расширенное пространство Дирихле, эксцес-
сивные функции, рекуррентность, лиувиллево свойство.
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