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1. Introduction

We consider non-divergence elliptic operator

Lu = — Z a;j(x)D;Dju in L (1.1)

ij=1

Such operators arise in theory of stochastic processes and various applications.

In (1.1) ©2 is a domain in R™, n > 3, and D; stands for the differentiation with respect
to ;. We suppose that the boundary 952 is split 92 = T'; U {C} UT,. Here T'; is support of
the Dirichlet condition, and I'; is support of the oblique derivative condition:

ou, . . ulr)—ulx—058)
W(x) = 51520 5 =W(x) on Iy,

u(r) = ®(x) on TI'y;

where ¢ = {(z) is a measurable, and uniformly non-tangential outward vector field on T's.
Without loss of generality we can suppose |¢| = 1. We call I'; Dirichlet boundary, and T’y
Neumann boundary.

At point ¢ € 'y N T, function u is not defined, and we investigate asymptotic properies
of the solution at this point.

For divergence type equation in case of Dirichlet Data this type of theorem first was
proved in very general case by Mazya in [9]. Criteria for regularity for Zaremba problem
first was obtained by Mazya in [3].

Here we consider the case of non-divergence equation in bounded domain €2 where
Neumann I'y is Lipschitz in a neighborhood of the point C.

In the case I'y = () the similar question was discussed by E.M. Landis (see [5;6]) and
sharpened by Yu.A. Alkhutov [2].

We always assume that the matrix of leading coefficients (a;;) is bounded, measurable
and symmetric, and satisfies the uniform ellipticity condition:

maxsup e(z, &) =: e; < 00,
[El=1 zeq

where e is the ellipticity function (see [2;6])

>icy @i(2) '
D1 i (T) &g

For simplicity we consider the operators without lower-order terms, a more general case can
be easily managed.

The paper is organized as follows.

In Sec. 2 we formulate some known results about non-divergence equations: lemma
on non-tangential derivatives at point of maximum (minimum) on the boundary in the form
of Nadirashvili [10], the Landis Growth Lemma in case I'y = (), and Growth Lemma in
Krylov’s form.

The Growth Lemma for elliptic and parabolic equations first was introduced by Landis
in [4;7]. Growth Lemma is a fundamental tool to study qualitative properties and regularity
of solutions in bounded and unbounded domain. Recent review on Growth Lemma and its
applications was published in [12] (see also [1]).

e(z, &) =
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In Sec. 3 we prove strict Growth Lemma near Neumann boundary.

Sec. 4 glues two Growth Lemmas. This result was obtained under some admissibility
constraint on the boundary I'y, which is an analog of isoperimetric condition.

In the last Sec. 5, dichotomy theorem is proved for solutions of mixed boundary value
problem to non-divergence elliptic equation.

We use the following notation. = = (2/,z,) = (x1,...,24_1,%, is a point in R".
B(z, R) is the ball centered in x with radius R.

2. Preliminary Results

Here we recall some known results and prove auxiliary lemmas for the sub- and
supersolution of the equation Lu = 0. We call function u sub-elliptic (super-elliptic) if
uwe W2Q)NCHQUT,), and Lu < 0 (respectively, Lu > 0).

We say that I'y satisfies inner cone condition (see, e.g., [10]) if there are 0 < @ < 71/2
and h > 0 such that for any y € I'y there exists a right cone K(y) C €2 with the apex at y,
apex angle @ and of the height h.

Fig. 1. Inner cone condition

In [10] N. Nadirashvili obtained fundamental generalization of Oleinik — Hopf lemma?,
the so-called “lemma on non-tangential derivative”:
Lemma 2.1. Let T’y satisfy inner cone condition. Let a non-constant function u be
super-elliptic (sub-elliptic) Lu > 0 (Lu < 0) in . Suppose that y € 'y and u(y) <
< u(x) (u(y) > u(x)) for all x € T's. Then for any neighborhood S of y on I's and for
any € < @ there exists a point * € S s.t.

%(&7) <0 <%(Zﬁ) > 0)

for any outward direction ( s.t. the angle 'y between { and the axis of K(T) is not greater
then @ — e.

From standard maximum principle and Lemma 2.1 follows comparison theorem for
mixed boundary value problem.
Lemma 2.2. Let ) be a bounded domain, 02 = I'y UT's. Let I'y satisfy inner cone
condition. Suppose that vector [ield { satisfies the same condition as in Lemma 2.1. Let
functions u and v belong to W2(Q)(NCHQUT,) NC().

Then, if Lu < Lo in Q, u<wvon Ty, and 34 < %% on I'y then u > v in €.
Definition 2.1. Let Q be a domain, 02 = I'y UT's. Define “small ball” B(0, R) and “big
ball” B(0,aR), a > 1 (see Fig. 2).
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We call the function w barrier with respect to mixed boundary value problem in these
two balls if it posses properties:

w is sub-elliptic (Lw < 0) in the intersection QN B(0, aR); (2.1)
w(z) <1onTyNB(0,aR); (2.2)

%—Z] <0onTyN B(0,aR); (2.3)

w <0 onQNIB(0,aR); (2.4)

w(x) > ng in the intesection B(0, R) N (2.5)

for some constant ny.

Fig. 2. Domain G and two balls B(0, R) and B(0,aR) (a > 1)

Now we are in the position to prove the following strict growth property for subsolu-
tions of the mixed boundary value problem.

Lemma 2.3. Let ) be a domain, 02 ="'y UT's. Suppose that a function u be sub-elliptic
in QN B(0,aR), u>0in Q, u=0o0nT1NB(0,aR) and 2 < 0 on 'y N B(0,aR). Let
[y satisfy inner cone condition.
Assume that there is a barrier w in balls B(0, R) and B(0,aR).
Then
SUPonpB(o,R) Y

sup  u > (2.6)

QNB(0,aR) I—mo

Proof. Let M = supgnp(.r) U, and let the barrier w(x) be as in Delfinition 2.1. Define
v(x) = M(1 —w(x)).

Obviously Lv > Lu in ©, v > uw on 'y N B(0,aR), % > % on Iy, and v > M > u
on 0B(0,aR) N . Applying comparison Lemma 2.2 to functions v and u in the domain
QN B(0,aR) we get that v > w. In the intersection Q N B(0, R) this gives with regard of
(2.5)
M(1— >M(1— inf w)> sup wu.
(1=mo) 2 M( QNB(0,R) )z QmB(g),R)

The latter is equivalent to statement in (2.6).

We recall the well-known notion of s-capacity, see, e.g., [6, Sec. 1.2].
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Definition 2.2. Let H be a Borel set. Let a measure w be defined on Borel subsets of H.
We call p admissible and write u € M(H) if

d
Mgl, for x € R"\ H.

ulr—yl*

Then the quantity
Cs(H) = sup n(H)
ueM(H)

is called s-capacity of H.

We also recall the following simple statement.
Proposition 2.1. If s > ey — 2 then L|z|~* <0.

Now we formulate a variant of the Landis Growth Lemma, see [6, Sec. 1.4].
Lemma 2.4. Let function u be sub-elliptic in QN B(0,aR), u > 0 in Q, v = 0 on
Iy =00QN B(0,aR). Let s > e; — 2. Then there exists 0 < 1y < 1 depending only on s

s.t.
sup U
sup U > QNB(0,R)

onBoar) 1 —mC(H)R™*

Here H =T11N B(0, R).
Consequently if B(0, R) \ Q2 contains a ball with radius SR then

SuPonpo,r) U

sup u > —
QNB(0,aR) I—m

where the constant N, depend on s and 9.

3. Growth Lemma near Neumann boundary

Here we prove the Growth Lemmas in the domain adjunct to I's under some assumption
onI'.

We recall that T'y is uniformly Lipschitz in a neighborhood of 2°. This means that there
is 8 > 0 s.t. the set 'y N B(x°,8) is the graph x,, = f(2') in a local Cartesian coordinate
system, and the function f is Lipschitz. Moreover, we suppose that its Lipschitz constant
does not exceed L. Without loss of generality we assume that QN B(2°,8) C {z, < f(2/)}
(see Fig. 3). This implies the inner cone condition if we direct the axis of the cone K along
—x, and set @ = cot™!(L).

Lemma 3.1. Let Ty N B(0, R) = 0, and 2° € TN IB(0, R), for some R < % Assume that
QN B(0,xR) =0 for some 0 < a < 5 (see Fig. 3).

Suppose that the vector field { satisfies conditions in Lemma 2.1 uniformly on I'y
(that is, € does not depend on x € I's).

Let function u be sub-elliptic (Lu < 0in ), u>0in Q, u=0 on I'y and % <0
on I's.

Then there exists a > 1 depending on the Lipschitz constant L, ¢ and ellipticity

constant ey S.t.

SUbaonp(o,r) W

sup u > (3.1)

QNB(0,aR) I —n

Here n2 € (0,1) is defined by « and a.
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Fig. 3. Domain €2, boundary 'y and balls B(0, R), B(0,aR) and B(0, xR)
Proof. We take s > e; — 2 and set

st RS 0‘8

Sl e

w(z)

We claim that for a sufficiently close to 1 this function satisfies all conditions in Definition
2.1. Indeed:

1. From Proposition 2.1 function w is sub-elliptic, condition (2.1) holds.

2. Evidently w = 0 on 0B(0,aR), condition (2.4) holds,

3. while QN B(0,xR) = 0 implies w < 1 in QN B(0,aR) (and therefore on T';)
condition (2.2) holds.

Now we check condition (2.3). We introduce the Cartesian coordinate system with
axes collinear with those of local coordinate system at 2°. We observe that the assumption
'y N B(0, R) = 0 and Lipschitz condition imply that for x € T'y N B(0,aR)

R R
P < (L4 —1); x> (1— LV =1).
e oA ’

Moreover, our assumption on the vector field ¢ means that

0] < sin(cot= (L) — &) < ——

T V14 L2

L
ln > cos(cot (L) — &) >

———— +7
T VIt L2

where € depends only on L and e.
Therefore, the direct calculation gives

ow sa’R? .,
so® R? R

< .
= ‘x’s+2 /1—|—L2

[t is easy to see that, given € > 0, there is @ > 1 depending only on ¢ and L s.t. %—Zf(:v) <0,
and (2.3) holds.

Finally, for z € QN B(0, R), w(z) > «*(1 —a~*) =: 15, and (2.5) holds.

Thus, the claim follows, and w is the barrier in the balls B(0, R), B(0,aR). From
Lemma 2.3 we get (3.1).

(Ve =1- (VI+ 2+ (L - 1)) (L +1)).
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4. Growth Lemma in the Spherical Layer

In this section we prove Growth Lemma in spherical layer near junction point of
interest ¢ = I'y N T,. Without loss of generality we put ¢ = 0.

First we will introduce admissible class of domains in the spherical layer.
Definition 4.1. Fix five constants 0 < q1 < g2 < ¢" < g3 < q4. Define two spherical layers
Ugr C Ug: R

Ur = B(0,@aR)\ B(0,q1R);  Ur=B(0,3R) \ B(0, 2R).

We call €) admissible in the layer Uy if for some © > 0 there is finite set of the balls

(see Fig. 4)
B={B"=B(&,0R)}\,; B*cUg

s.t. the following holds:

1. Cy(B'NTy) > »#C,(Ty N UR), for some constant s > 0.

2. B*NTy =0, k=1,..,N, and B(&,a0R) N Ty = (), where a > 1 is defined in
Lemma 3.1. 3

3. There is & € (0,1/2) s.t. every ball in B can be connected with B° by a subsequence
of balls B s.t. any intersection B’ N BI™ N Q contains the ball B(&;,1,8R).

4. The set Sgp = 0B(0,¢*R) N is covered by balls in B.

Fig. 4 schematically illustrate Definition 4.1.

Fig. 4. On the left: domain €2 admissible in Spherical Layer Ug. On the right: domain and layer
zoomed near boundary I's (bold line)

Lemma 4.1. Let function u be sub-elliptic, uw > 0 in €. Suppose that uw < 0 on I'y and
% <0 on T'y. Let domain ) be admissible in the layer Ug. Then

Supg, U
> 4 .
oS TG (R

Here H = 'y NUy while 1 depends on s, the ellipticity constant ey, the Lipschitz constant
L, the vector field {, constants 0, s, & in Definition 4.1 and the number N of balls in the
set B.
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Proof. Without loss of generality we set © = 1. Let supg, u =: m = u(y), here y € Sg.
By assumption 4 in Definition 4.1, y € B* for some k. By assumption 3, we can choose a
subsequence B connecting B and B*.

Consider the ball By and the ball B(&g,aR), a > 1, concentric to it. Due to assump-
tions 1 and 2 in Definition 4.1, we can apply Lemma 2.4 to get:

SUP gorg U
M :=supu> sup u> :
Q QNB(&y,aR) 1 —5mCy(H)R™

Suppose that

s C,(H) R
sup u > m(1l — &), where 6y = . 4.1
Boﬂ% - ( 0) 0 2(1 — %I’]lcs(H)Ris) ( )
Then after some calculation we get
m
M >
1 -13Cs(H)R®
for some N3 depending on sm;, and the statement follows.
If (4.1) does not hold, we consider the function

w(z) = ulz) — m(1 - &), (4.2)

then u;(z) < 0in B°NQ.

By assumption 3, BN B' N contains a ball of radius §R. Let ; := {z : uy(z) > 0}.
Assume that B N Q; # (), otherwise we consider the first ball in the subsequence B7 for
which this property holds.

Suppose that

sup u; > mdp(1l — 1), (4.3)
BInQ
here the constant T will be chosen later.

Consider any simply connected component of the domain B(&;,aR) Ny in which the
supremum in (4.3) is realised. There are two possibilities:

a) B(&,aR) N Ty = 0;

b) B(El,aR) N FQ 7£ @

(recall that a = a(L, ¢, e;) > 1 is defined in Lemma 3.1).
Let us start with case (a). Due to assumption 3, Lemma 2.4 and (4.3) it follows that

SUPping U1 mdo(1 — )

sup = up > = > — (4.4)
B(&1,aR)NQ I—-m 1-m
Using (4.2) and (4.4) we deduce
6 N, —
sup  u>m(l+ M)
B(&1,aR)NS 1—m
Letting T = %1 we get
d
M> sup u> m(l + ot ), (4.5)
B(£1,aR)NQ -2t
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and the statement follows.

In case of (b) we proceed with the same arguments but instead of Lemma 2.4 we
apply Lemma 3.1 and put T = %2. Thus, if (4.3) holds with T =  min{f;,n2} then (4.5) is
satisfied in any case, and Lemma is proved.

If (4.3) does not hold then function u satisfies

sup u < m(1 — dg1).
BINQ

As in previous step we consider the function
uz(x) = u(z) — m(l — dg7),

us(z) <0 in B'NQ.
Repeating previous argument we deduce that if

sup ug > mdt(l — 1) (4.6)
B2nQ

then
60T2

>
M_m(1+1_2T),

and Lemma is proved.
If (4.6) does not hold, then

sup u < m(1 — §yT?).
B2nQ

Repeating this process we either prove Lemma or arrive at the inequality

sup u < m(1 — §y¥)
BFNQ

that is impossible since y € B* and u(y) = m.

5. Dichotomy of solutions

In this section we will apply obtained Growth Lemma in spherical layer to prove
dichotomy of solutions near point ¢ of the junction of Dirichlet and Neumann boundaries.
As in previous section we put ¢ = 0.

Let Q C {z:x, < f(2/)} and I'y is a graph of the function z,, = f(z’), f(0) = 0. Set
R,, = Q™™ for some Q > 1, S,, = 9B(0,¢*R,,), and

Un = B(0,q4Rn) \ B0, 1 Ry), Uy = B(0,q3Ry) \ B(0, g2 Ry).

We fix Ng € Nand ¢ < 2 < ¢* < q3 < q4 s.t. ¢ < ¢1Q. Suppose that for all
m > Ny the domain €2 with boundaries I'y and I'y is admissible in the layer U, in the sense
of Definition 4.1 with R = R,,, and all constants in Definition 4.1 do not depend on m.
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Lemma 5.1. Let furzction u be sub-elliptic, v > 0 in ). Suppose that v < 0 on I'y N
N B(0,qRy,) and %% <0 on I'yN B(0, ¢4 Ry, ). Let domain Q be admissible in the layers
Um; m 2 NO

Let M, = supg ~qu. Then one of two statements holds:

either My,+1 > My, for some Ny, and for all m > Ny
My,

M1 > , 5.1
= 1 _nCs(Hm)Qsm ( )
or for all m > N
Mm+1
M, > : (5.2)
1- nCs(Hm>Qsm

Here H,, =11 N Um and n is the constant from Lemma 4.1.

Proof. Due to Lemma 2.2, there are two possibilities:

(a) if My, 41 > My, for some Ny > Ny then M(p) = supyppnat > Mm, m > N
for any p < ¢*R,y;

(b) otherwise M,, > M, for all m > Nj.

Now Lemma 4.1 gives (5.1) in the case (a) and (5.2) in the case (b).

Remark 5.1. Let function u be sub-elliptic, u > 0 in Q. Suppose that u < 0 on I'yNB(0, pg)
and % < 0on 'y B(0,pg). Then the maximum principle implies the following dichotomy
(we recall that M (p) = supyp(g,p)no v):

either there is p* < pg s.t. for ps < p; < p* we have M(p2) > M(py);
or M(p2) < M(py) for all py < py < po.

Applying recursively alternative in Lemma 5.1 and using Remark 5.1 we get asymptotic
dichotomy.
Theorem 5.2. Let the assumptions of Lemma 5.1 be satisfied. Suppose that
S Cy(H,) Q"™ = oo, where H,, =Ty N U,

Then one of two statements holds:

either M(p) — oo as p — 0, and

[eInp]
hgg 1£f M (p) exp ( Z C( Qsm>
or M(p) - 0as p—0, and
[elnp]
lim sup M (p) exp ( Z C( Qsm>

p—o0

Here M and c depend on the same quantities as 1 in Lemma 4.1.

REMARKS

1 Akif Ibraguimov partially supported by DMS NSF grant Ne 1412796 and Alexander I.
Nazarov supported by RFBR grant Ne 15-01-07650.
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2 In [10] classical solutions u € C?(Q) NCY(Q) are used but due to the Aleksandrov —
Bakel’'man maximum principle it is transferred to u € W2(Q2) N CH(QUTs).
3 Note that boundaries of some balls B* may touch I's.
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AnHotaumsa. CraTbsl MOCBsLEHA KaueCTBEHHOMY HCCJEIO0BAHHIO peLIeHHUs
3amaud THna 3apeMObl B JUMILKLEBOH 00/1aCTH, MOCTABAEHHOH A5 3JJUNTHUECKO-
ro ypaBHeHHUS B HeluBepreHTHOH ¢opme. OCHOBHOH pe3y/bTaT — JeMMa O POCTe
tTuna Jlanauca B cepryeckom cJjoe A CMellaHHOH KpaeBod 3aiauM B KJacce «J10-
nycTuMoi o6sactu». Ha ocHoBe JieMMbl 0 pocTe nokasaHa Teopema PparmeHa —
JIunpeneda B Touke coenuHeHHs rpaHulbl JMpHXJ/e W TpaHHLBI, Hal KOTOPOH
onpezie/ieHa NPOU3BOJHAS B HEKacaTe/JbHOM HallpaBJIEeHHH.

KaroueBble cioBa: 3//IMNTHYECKOE ypaBHEeHHe B HEeJHMBEPreHTHOH opme,
CMelllaHHasl KpaeBas 3anada, jJemMa o pocre, TeopeMa Pparmena — Jlunpeneda,
3ajaua Tuna 3apeMoObl.
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