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1. Introduction

In [78] we have introduced an infinite Coxeter group on two generators associated
to the Heisenberg group H; and studied related analysis. In this paper we present some
possible outlook how that theory could be extended to include other noncompact Lie groups.

2. Crystallographic Groups

In this paper we will consider an algebraic and analytic structures associated to a
given set of fields X;, j = 1,..., N, on a differentiable manifold &, given by a family of
maps oy : G — G, k € N, satisfying the following condition

Xi(foor) = apulXif) oo (1)
il

(possibly only on certain sub-space of functions) with some ;. ; € R. In particular we
introduce the following definition.
Definition 2.1. A map o : G — G satisfying

Xj(fo(y):_(Xjf)oG, coo=1id (2)

will be called a reflection.
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3. Examples: Coxeter Groups of Systems of Fields

In this section we present explicit examples of maps indicated above for certain types
of nilpotent Lie groups (as classified in section 4.1 in [15]).

3.1. B-Groups

Let G = R x R™ with composition e of elements w = (¢,x),w’ = (¢',x’) defined as
follows
(t,x) e (t',x) = (t+1t,x + eBx)

Then for

o(w) = (—t, e *®Bx)
and

X =0+ (Bx)-V,
where V denotes the gradient with respect to x, we have

X(foo)=—(Xf)oo

For components 9; of V the reflections are simply given by maps x; — (—1)%xz;, j = 1,..,n.
the corresponding set (1) of maps includes also linear maps (with respect to x).

3.2. K-Groups

Let G = R™ x R™ x ... x R", with ng > ny > .. > n,, r € N. This is similar
to B-groups except that ¢ is replaced by a ngp-vector t and the matrix in the definition of
composition is lower triangular with the sub-diagonal part consisting of blocks ng X ns_1
with rank equal to ng for each s = 1,..,r. In this framework we consider the following
fields (homogeneous of order one with respect to a natural gradation)

where V denotes the gradient with respect to the variable of hidger degree of homogeneity
(different than t-variables).

Within this class we would like to indicate a special class of H-type groups defined
with r = 1 and a single antisymmetric block B. In this case we have a nice family of
reflection maps o5, j = 1, .., ng, satisfying

Xj(foo;)=—(X;f)oo;

explicitly given by
o;(w) = w e (—2{8;it;},0) = ({(—=1)*t;},x, — 2> Bujitt;)

with j,2 = 1,..,n9 and & = 1,..,7. These maps are idempotent, i.e. o; 0 0; = id, and (in
general) they do not commute with each other. There are also some other reflection maps

given as follows
6;(w) = ({(=1)>"t:}, —x)

which do commute between themselves. It is interesting to notice that one can also have
some other maps which intertwine the fields and are not of order two. To see this consider
the following simplest example of such group.
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3.3. H; Group
Withwew = (x+ 2,y + vy, 2+ 2 + 2a(yxr’ — zy')), a # 0, and fields
X = 81, + 2(17'[282, = 81/ — 2&7‘[162

with 711 (w) = = and my(w) = y, we have the following corresponding reflections

GX(w) = (_1'7'!/,2 —4(1,1}y), 6-X(w) = (_xvyv_z)y
O—Y(w) = (I, —Y,z + 4CL.§L’y), (N)—Y(w) = (‘rv -V, _Z)
and a common one
0= (—x,—y,2).
Moreover, for
0'+(’U}) = (y7 —Z, 2)7 0-*<w) = (—y,l', Z)

we have

o oo (w)=id=o0,00_, 0® =id = o},

We note also the following relations

GXO(S'X_(}XoO'X’ Gyoa'y:a'yoﬁy,
6'OUX:UX06, (AYOO'YZO'YO(AY7
6'06')(_6')(06':6)/, 6'06'y:6'y06':6X,

and

0,00y =0x 00y, 0,00y =0x00_,
0_00y =0x00_, 0_00y =0x 00,
600, =0,00=0_, 000_=0_00=0,.

For o, o_, we have
X(foop)(w) =X(f(me, —m,m3))(w) =
—(0yf) 0 04 (w) + 2amz(w) (0. f) 0 o4 (w

) =
= (=(0yf) +2am 00(9.f)) 00y =

where we have used 75 0 0_ = 717, Similarly

Y(foo)(w) =Y (f(—m,m,m))(w) =
= (_(8xf) - 2&711 o G-i—(azf)) —(w) -

where we have used 7y 0 0 = 7. Finally for the reflection 6(w) = (—

02

S

—(Yf)ooy(w)

—(02f) 0 0 (w) = 2am1 (0. f) © 0 (w) =
—(Xf)o

x,—y, z), one has

o (w)

X(fo6)=Xf(—m,—m,m3) =—(0,f) 06+ 2amz(0,f) 0 6 =
= _(8mf) o0 — (2G7T282f) e} 6‘ = —(Xf) o 6‘
and similarly
Y(fod)=—(Yf)ob
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The Coxeter group generated by ox and oy is of infinite order and all its elements can
be describe as follows: We set

L, = (oxoy)" Ly=id L_,= (oyox)", neN
and

R 1=L,oox=o0xo0L,, and R _%EL_nOO‘YZO'yOL_n, neN

n+§ -n
With this notation we have
LyoL,, = Lyim, and R,oL,, = Ryim.

The subgroup {L,, } ez is abelian and moreover any (group) commutator in the group gener-
ated by ox, oy belongs to {L, },ez. The group is furnished with the following intertwining
structure

o+ ORM% = R_n_% ooy and opol,=1_,004

Finally we mention that the fields X and Y are preserved by the following families of
translations
TX(w)E(x+a,y,z+c), Ty(M)E(ZE,y—I—b,Z—f—C),

respectively, with a, b, c € R, as well as the left action of the group.

Remark. In complex representation of Heisenberg group where w = (v,t) one has the
following natural reflections o, +(w) = (v*, t), 6(w) = (—v,t) = 0?(w) where o4 (w) =
= (Fiv,t). Then ox(w) = 6 o 0y (w) with oy(w) = o0, _(w). Finally oy(w) = (v*,t +
+ 2aR(—iv?)) and ox = 0, 00y 0 O_.

3.4. Examples of Higher Order
(i) Let G = R* and
wew = (v1 + ), To + Th, T3 + Th + T30, 4 + T + X35 + 207%)
with dilation 8)(w) = (Axy, Axa, A%x3, A>x4). Consider the following system of fields
X1 =01+ x905 + x%&l, Xy = 0.
See e.g. [15] for such the structure. Define
o1(w) = w e (—=211,0,0,0) = (=21, Ty, T3 — 27179, T4 — 27173).
Then we have 0y 0 07 = 7d and

X1<f e} 0'1) = Xl(f(—Tfl,TIQ,Tig — 27'[17'(2,7'(4 — 27'[17'(%)) =
= —(01f) 0 01 = 2my(03f) © 01 = 2m3(Duf) © 01 + T2(D3f ) © 01 + T3 (Ouf ) © 04
= —(X1f)ooy.

Also for

0/1(71)) = (—x1, T2, —x3, —T4), 0= (—x1, —T2, T3, —T4)
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one gets
Xi(fod)=—=(Xif)od), and Xi(fod)=—(X1f)oo0.

In all cases we have id = 0y 0 01 = 0 0 0y = 07 0 6;. For the second field the relation
Xo(fooz) =—(Xaf) 00,
is satisfied with any map of the form
oy(w) = (axy, —x2 + By, Y3 + 5a2 exy + (w123)

with «, 3,v,0,¢,C € R. Such the map satisfies condition oy 0 05 = id if additionally one
requests («,6,v,¢) = (—1,0,1,1),(—-1,0,—1,—-1) or (e, B,d,v,¢) = (1,0,0,—1,1) and
(e, B,8,v,¢,0) = (1,0,0,1,—1,0). For the last choice we obtain & which also reflects the
first field. This is a situation which is different from the H; group.

(ii) Let G = R* and

/ / / / / / 1 /\2 /
wew = (r1+ 2, X9 + Ty, w3 + x5 + X X0, x4 + Ty + 5:102(931) + x377)

with dilation 8)(w) = (Axy, Axa, A%z3,A3x,). Consider the following system of fields
X1 = 01 + 2203 + 1304, Xy = 0o,
see e.g. [15]. Define
o1(w) = w e (=211,0,0,0) = (=21, T9, T3 — 20129, T4 + 22729 — 2173).
Then we have

Xl(f @) 0'1) = Xl(f(—T[l,TEQ,ng — 27'[17'[2,7'[4 + 27'[%7'[2 — 27'[17'[3)) =
= —(01f) 001 —m2(03f) 0 01 + (2miTy — 73)(Oaf) 0 01 =
= —(X1f) oo

For
Gll(w) = (—I1,$2,_x3,$4) or 0= <—$1,—x2,$3,—$4)

A

we get also reflection of the field X;. In all cases we have id = 0y 001 = 0] 00} =G00.
For the second field we have

Xo(fooy) =—(Xaf)o o9
with any map of the form
oo(w) = (w1, —x9 + Py, yT3 + 027, €24 + (T173)
with o, 3,v,0,¢,C € R. Such the map satisfies condition oy 0 09 = id, if additionally one

requests (a,d,v,¢) = (—1,0,1,1),(=1,0,—1,—1) or (e, B,8,v,¢) = (1,0,0,—1,1). We
remark that in the present case also ¢ reflects X5.
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4. Problem of Effective Description of Coxeter Groups

The first emerging general issue is as follows.

(P1.i) Given a basis X;, 7 = 1,.., N, of iree nilpotent Lie algebra, as described in [48],
describe the Coxeter groups C'X; of a given field X.

(P1.ii) Describe the crystallographic group corresponding to the basis X, j =1,.., N.

In the second case we ask for more than just the description of the group V;CX;
generated by all C'X;, as it could also include intertwiners as well as possibly some other
elements. One can illustrate that a full variety of structures can occur by considerig the
following class of examples of n fields with linear coefficients in R™**

0 0
X = B + ZBjiwi$>

T i

where Bj; is a nonsymmetric matrix, with associated reflections given by

0j(w) = ({(_1)5ijxi}i=1,..,n7 z—2 Z Bjjxjx;).

i#j

The commutativity structure can be obtained by constructing a graph with n vertices in
which vertices v; and v; are connected by an edge e;; iff B;; # 0, and in this case o; and o;
do not commute. o;,5 = 1,..,n, generate a Coxeter group of infinite order. Additionally in
the present case C'X; contains reflections

6;(w) = ({(=1)*@i}im,.n, —2)

and
6;(w) = ({(—=1)° (=152 }im1, s 2)

and possibly some others (including also number of intertwiners). Moreover the field X;
is invariant with respect to Coxeter group acting on variables which are not involved in
definition on X as well as with respect to traslations ;(w) = ({z; + «;8i; bic1,.n, 2 + V),
with o, v; € R, respectively.

Generally we may have a finite Coxeter subgroup and additional infinite component in
a given Coxeter group. We remark that in some examples we had a subgroup containing
reflections of many fields. One may expect that these data could help to classify the
corresponding noncompact Lie groups.

5. Inverse Problem for Coxeter Groups

Suppose one is given generators o; of a Coxeter group on R”, then one can ask what
are the fields X which satisfy the reflection relation

(Xfooj)=—(Xf)ooj (**)

For example one knows (see e.g. [70]) that the Painlevé II

1
ﬂ:2u3+tu+b—§,

48 B. Zegarlinski. Crystallographic Groups for Hérmander Fields



s MATEMA T K A I

represented as a Hamiltonian system with canonical variables
_ — o 1t
q=u, Pp=u+u + 5

as follows

j=%=p—q -3
p=—5%=2pq+b

admits a Coxeter group of Bicklund transiormations generated by the following map

b
Gl(Qap7b) = (q—|_1_97p7_b)
G2(Qap7 b) = (_Q> -p + 2q2 + ta 1- b)

[t is the infinite dihedral group encountered before for the Heisenberg group H;. One can
solve the reflection equation with respect to the fields getting

0 1 0 0
1(fooy) (X1f) ooy, 1 (‘3b+< 2p+al)8q+613p’
Xo(fooy) =—(Xaof)oo X = 2 (copl 12
2 2) = 2 25 2 = g q ap Yzab
with the functions «; 0 0y = —tq, B1 007 = 1 and y5 0 05 = yo. (It would be interesting

to repeat that for other Pailevé problems using identification of [40;61].)

Homogeneous Lie groups on R"
Consider now the case when the group action is given by
(wew'), = xp + x, + Qp(w, w')
with Qr(w,w’) = Qp(xj, 2} : j =1,..,k — 1), satislying
Qk(w, w,)|x;:0:j:1,..,k71 = 0.

(According to Theorem 1.3.15 in [15] such properties would satisfy a composition law for
any homogeneous Lie group on R™.) Then, each map

oi(w) =wer(w),  with 0V (w)); = —28, 2, (3)

is a reflection, i.e. 0;00; = id, if the inverse to 1) (w) is given by —1(w). This is because
(@ (w o ) (w))); = —28; ;(w @ v (w)); = 26; ;7; and this delines the inverse element to
r@(w) in our group. (In fact, by Proposition 2.2.22 in [15], for stratified Lie groups in
appropriate representation this is always the case.)

In this case one can study the corresponding reflection problem (xx) for fields

Xif_yi%f(wosi_f@w _% (wOEi)EZO'
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We have the following result.
Theorem 5.1. For o; given by (3) the [ields X; satisfy the reflection problem (xx) for,
respectively, provided that

d
Qe (@) o eicnr, (-2l + D)y )| =

le=0

- {%Qk(((&(w))lgk—h (8i5€)j<k-1)

le=0
Proof. Using the definition of the fields X;, we have
X,(foo,) = lim fooi(woeg;)— fooi(w)
e—0 £
with
(oi(woe)) = (woeg;o f(i)(w 0 &)k
= (wo &) — 28i(w o &) + Qr(w o g, 1% (w0 g;))
= (—1)% (wo &) + Qu(wo s, 1D (w o ey)).
Using (1@ (w o ¢;))x = —28:(w; + €) and our assumption about Qy’s, we have
W, fork <
(o5(wog))p =8 —w; — ¢, fork =1
wi + Qr((wo & )i<k—1, (—20;(w; + €))j<p—1),  fork >
Hence

Xi(foo)(w) =—(0;f) o 0;(w)
—|—Z |: Qk U)O€>l<k 1,( 2623(w1+£))

k>i jsk—1

)] (Onf) o o4(w)
le=0

while we have
(Xif) o oi(w) = (9;f) o oi(w) +
Z [ w))i<k—1, (&‘jdjgkl)} (Okf) 0 03(w).

k>i |e=0

Thus to get (**) we need

d%@k ((0i(w) o & )ick—1, (=284 (o3 (w); + 5))j<kl)] =

le=0

_ {%Qk((m(w))mb (éijs)j<kl)]

le=0
We remark that in non-homogeneous case one can allow for maps having a component
xj = —; + gj(zk, k < j)
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with even polynomial ¢; if the components xy, k < j, just change a sign, as we have seen it
in case of Backlund transformation.
Remark. In complex representation of Heisenberg group where w = (v, t) one has also the
following natural reflection &y (w) = (v*,t — 2aR(v?)) and ox(w) = (—xz,y,t + 2aR(v?)).
Then the fields

Y =0, — 2ay0,, X =0, — 2az0,

would satisly
Y(an'y):—(Yf>06'y, X(fo&X):—(Xf)oﬁx.

[t would be interesting to find out for what Coxeter groups one can choose a system of
fields such that (**) holds and for which Héormander condition is satisfied.

6. Representations and Co- & In-variant Functions
In [78] where we have studied H; and introduced
0-X('w) = (-SL’, Y,z — 4a:cy), GY<w) = (1:7 —Y,z+ 4CLLL’y)

we have provided there a simple representation of the corresponding Coxeter group on the
linear span of the following generalised linear functions

n z ¢ z

r,Yynm=x 5 6=Y— 5

a 2ay Y 2ax

as follows
rooxy =—x Yyoox =Yy mnoox=mn—4r (oox =—C
rToOoy =2 Yooy =—Y TNooy =—1 ooy =(C—4y

To this we add relations coming from additional o’s described above as follows

ox(w) = (—z,y, —2), oy (w) = (v, —y, —2), o(w) = (—x,—y, 2)

04+ U)) = <y7 —ZE,Z), O-*(w) = (_y7$7’z>

for which we get

noo = -, (o0 =—(
nmoox =-m, (o0x=¢(
nooy =n, ooy = —(

and the following intertwining relation
noo, = (.

The Coxeter group generated by oy, 0y, 0L preserves the Kaplan norm, while a group in-
cluding also generators ox, oy would preserve the set of functions spanned by the following

) 4a 4
bylw) =3 a, S Er T (2 - nfzy))

q nez
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defined with ¢ € Nand (§,)7 =1, &, # 1, A € R and a function ¢.

Note that

n _iA( z—i—n—a:y 4a
Joox(w) =Y e b=+ n"2ay))

neL q

and 4

iNz+niey a

bgooy(w) =Y Ele M) (2 + n;ajy))
neE”L

For higher order examples considered in section 3, besides homogeneous norms, one
can find also for example the following homogeneous polynomials invariant with respect to
the basic finite Coxeter subgroup (not including o)

(1) 12273 + 11704 + 23 + 15 + 2]

(i) 1293 + Towy + 23 + 25 + 2}
which are very similar. This brings us to the following problems.

Problems 2.

(P2.i) Describe representations of the groups \/; C'X; on spaces of functions.

(P2.ii) Describe the invariant homogeneous polynomials with respect to subgroups as
well as fully invariant functions.

7. Linear Operators

Given 0 € CXj, 0°2 = id, we can introduce the following linear operators.
DeMazur Operators

Ko
Aj,d = n_<] — _[0‘)

o

with I,f = f o 0 and a differentaible function n, satisfying
Ng© 0= "o and Xjrlc =1,

and a constant k, # 0. First we can introduce it on smooth functions vanishing on an open
set containing the set &, = {n, = 0}, and later extend by continuity. One can see that A, ;
vanishes on o-symmetric functions (i.e. functions satisfying I;f = f oo = f), and we have
the following:

Boundary Operator Property

2 _
A2, =0

Using DeMazur operator we define the following 1st order operators:
Generalised Fields

7}’0- = Xj + Aj70-.

Some care is necessary here as we are adding two unbounded operators. In case of free
nilpotent Lie group when the reflection has a simple implementation (with group left multi-
plication by (—29;;z,)), we note that

Ao f(w) = 2, / as(X, 1) (v")

52 B. Zegarlinski. Crystallographic Groups for Hérmander Fields
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with a path y¥ connecting w and o(w). Since by choice of our o we have the following.
Anticommutation Relations

{X],[O-}EXJIG—i_IO'X] :07 {A]',O'ajﬁ} :07

so also
{7},0‘7 ]O‘} = O
More generally one could introduce

ij = Xj + Z BUAj,G

UECXj

with B, € R, qucxj Bs=1.
With these extended fields, assuming later on (4, ks > 0, we introduce the following second
order operator

L= T
7,0

In this case one could check, similarly as in [78], (see also section 10), that such operator
satisfy the following.
Proposition 7.1 (Minimum Principle).

fwo) = min f = Lf(wo) =0

Proof. Since A% = 0, we have

LF =2 (5 +{X: A1) f

If a minimum point z¢ ¢ U;&, we have

0 O"Xj 0
Xifle fa0) = L5 (X0) = Xl 0 o) — SR A, o)
and ‘
Ao, X = ngj?;(]) (X;f (o) = (X;[) 0 0;(20)) -
Hence, using reflection property, we get
o 2ch KUijnt (1‘0)
X5, Ao, [ (o) = ijf(xo) - WA‘”JC(%)'

The first term on the right hand side is equal to zero at the minimum point. If X;ns >0
as we assume, we have

KG-Xjncr-(xO)
_ 200 A f) =
n%_j (x()) ]f( 0)

KO'ijnO'j (IO)

T]<27j<w0) (F(0jz0) = f(20)) 2 0

Maremar. ¢u3uka u komnbiotrep. Mmogeauposanue. 2017. T. 20. Ne 3 53 T—



MATEMATHK A 1

because at the minimum point f(ojzo) > f(xo). In case the minimum point zy € UG,
we need to use limiting procedure necessary to extend definition of A, to reflection ivariant
points. As we pointed out above (in case of nilpotent Lie groups) when X;n,. = 1, one gets

{X;, Aq, f} (o) = 26,X2 f(20) = 0
as required.

We note that, as in the case of Heisenberg group, the Coxeter group generated by the
reflections of the basic fields can be infinite and may contain infinitely many reflections of the
space subordinated to some other fields. For example in the Heisenberg case one generates
reflections of the form (oxoy)"0x and (oyox)"oy, n € N, which would satisfy the reflec-
tion relation with the fields of the form X} = 0, 4+ 2kay0, or Y, = 0, — 2kax0,, for suitable
k € Z. In this case we get discrete infinite family of representations of the Heisenberg-Lie
algebra and in this case one may also consider the following Markov generator

L= Z EkT’jz’k’G

Jk,o

with €, € (0, 00) satisfying >, e < oc.
Proposition 7.2. Assume the fields X; satisfy integration by parts formula with a
measure v invariant with respect all o;. Let p be a density function with respect to v. If

X;logp = 2xm; ! (4)

for all i (almost everywhere), then for all T; = X; + A; the following generalised integra-
tion by parts formula holds

/E(g)fpdv = —/gTi(f)pdV- (5)

Proof. Since for a given o; invariant measure v, we have

[ Atsav=- [ ganav+ [ gensav.

Using this together with the integration parts formula for the field X; with the measure v,
we notice that to have (5), one would need to satisfy the following condition

X;logp = 2xm; (6)

for all ¢ (almost everywhere).

[f the fields X;’s generate nilpotent Lie algebra, (6) provides necessary conditions on
n;’s for solvability, (as applying other fields and forming linear combination and repeating
this many times one can generate commutators of sufficiently high order which have to
vanish by nilpotency condition). Also applying X; again to (6) and summing over ¢’s one

obtains a relation
(Z X logp = Z 2k, X;m; . (7)
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In particular if X;m; = 1 we get, with X- X = (>, X?), the following

X-Xlogp = —Z2Km;2. (8)

In case when X; are generators of free nilpotent Lie group, we have X; = 0; + >
with «; dependent on the proceeding coordinates, with n; = x; one can choose

o= H i (9)

A possibility of other choices of n’s is discussed later in section 8.2.
Canonical Markovian and Dirichlet Forms
When the generalised integration by parts formula holds with measure du = pdv, we have

- [oesin= [1g-1ran= Y [(@otisin

On the other hand the canonical Markovian form of £ is as follows

j>i %j0;

Ximi 2

N —

D(f) = S(Lf* = 2fLf) = X/ + 3

II Xm; > 0, then this form is clearly nonnegative. (In particular this is satisfied for
generators of iree nilpotent Lie groups with n’s given by corresponding coordinate functions.)
In this situation the right hand side of (7) is nonnegative.

If the generalised integration by parts formula holds, we have

Jrthin= [ mran> [ span (10)

with the left hand side satisfying evidently positivity and contraction property of a Dirichlet
form on a suitable dense space of functions. Thus, after closure, it defines a Markov gene-
rator in Lo(p).

Next we remark that for density p and a differentiable function f, we have by Leibnitz
rule X(fp'/?) = (X[)p'/? + L fp'/*(Xlog p) and hence for du = pdv, we get

[t = = [0 fo(clogoyiv+ [ £KlogpPdn (D)

From this, by integration by parts in the first term on the right hand side, we arrive at the
following.
Proposition 7.3 (Hardy type inequality I).

1 1
/IXf|2duZ /f2 <ZIX1ng|2+§X-Xlogp) dy. (12)
Using the condition (6)-(7) we thus obtain.
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Proposition 7.4 (Hardy type inequality II). For generators of nilpotent Lie groups with
corresponding p given by (9) with k; > 1

/I?l‘fIQdLL > /fQZ(K?nZQ + K Xm; ) dp. (13)
In particular if Xm; = 1 one gets
[1estan= [ £3 i - ndn (14)

Since the set of Hormander fields satisfy Sobolev inequality, one also has the following
log-Sobolev type inequality satisfied

/leogff%i v < £/|Xf|2dv+0(e)/f2dv

for any e € (0,00) with C(e) ~ constlog® for small €. In particular substituting in this

inequality a function fp%, we get

2
/leogf}fzdudqu/FbgpduS e/IXf\2du+€/fo-X10gp dp+

+5 [ 72 xlogol dut C(o) [ fan

Hence

2
/f210gfj:2dudu+/f21ogpdu§ €/|Xf|2du_

1 1
—e/f2 (Z \Xlogp\2+§X~Xlogp) dp+

e) /f2du

Using Hardy inequality together with quadratic form bound (10) one can dress this inequality
up and obtain, (as in [78]), the following result.

Theorem 7.5 (Log-Sobolev Coercive Bound). Suppose Hardy Inequality (12) holds and
suppose for any ¢ € (0,1) we have

1 1
log, p~ ' < Ce <Z X log p|* + §X - Xlog p) + DC(¢)

with some constants C, D € [0,00) independent of f. Then

/f210g Pdn <£/|’]I‘f| du+ C'(¢) /dep. (15)
with C'(e) ~ constlog® for small .
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Using this and [25] we obtain the following important implication.
Corollary 7.6 (Ultracontractivity Estimate). The semigroup P, = e'*, with L=T - T, is
ultracontractive i.e. for t > 0 the operator P, : L1(n) — Loo(n) is bounded. Hence

— [ s, wd)

with a bounded (uniformly away from t = 0) smooth heat kernel hy(w,w).

Generally it is an interesting challenge to find estimates on the heat kernel. Since our
generator include jump type part, a nice method of [25] may not work. In [78] we proposed a
strategy for Heisenberg group based on estimating the moments of coordinate functions and
arguments of A. Grigor’yan [49]. It should be possible to generalise that to a class of free
nilpotent Lie groups. First of all Gussian exponential bounds in horizontal variables could
be achieved via Aronson arguments and one may hope that the bounds in other directions
could be reduced to the former via a technique involving generalised integration by parts
formula. Given estimates of moments one can find possibly optimal bounds for exponential
function and with this obtain a bound of the form

/ PO By (-, w)di < C(t,w) < o0

with d a natural (homogeneous) distance from a given point on the underlying space and
some positive constants o, 3. Then one can follow [49] as follows: Using Chapman —
Kolmogorov property

s w) = [ hya! @b, w)n(da)
and elementary inequality
1 [04 !/ B o /]~ o/~
0< —Ed (w',w) + §(d (W', w) + d*(w, w))

for some C' € (0,00) (independent of the points w,w’, W), together with Hélder inequality,
one gets

he(w', w)<e G (w'w)

) 1/2
([ #atur e ) ( [ ity D)

L gy N

~ 1/2 o 1/2
([ ety Duany) - ( [ hato, e D) )

where ¢; is the constant from the ultracontractivity estimate. Given such an upper bound
one could possibly use arguments of [9] to obtain a lower bound. One may conjecture that
at least in the case of [ree nilpotent Lie groups, the bounds should have a Gaussian
character in a suitable distance (possibly away from reflection hyperplanes). It would be
an interesting question what is possible in more general cases and how to quantify the
corresponding heat kernel bounds. Finally, is it possible to obtain sharpened version at
least with a tight exponential factor on both sides of the sandwich.
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8. Further Examples with Nilpotent Lie Groups
8.1. Nonhomogenous Nilpotent Lie Groups

In this section we present an example of the structures discussed above but in case of
nonhomogeneous Lie group.

Let @ and W be strictly increasing odd bijective real functions on R with ®'(0) =1 =
= U’(0). We consider the following Lie group action on Hg ¢ = R?

wod = (P7H(P(x) + (), UTH(T(y) + V(F)), 2 + 2+ P(2)P(y)).

In this setup we have the following (left invariant) fields

X () = 5w (2:0.0)) oo = s 0nf (w0
Y f(w) = %f(w 0 (0,€,0))e=0 = (@@, + @(2)0,) f(w)

and associated reflections

ox(w) =wo (¢7(-2%(x)),0,0) = (~2,y,2)

oy(w) = wo (0,7 (=2¥(y)),0) = (z, —y, z — 20(2)y)
for which we have the following fundamental relations satisfied

X(foox)=—(Xf)oox; Y(fooy)=—(Yf)ooy

=7=0,
and the following operator play a role of dilation operator
D = sinh(x)X + sinh(y)Y +222.

In the present case we propose to consider the following DeMazur operators

[ —[oox. [ —Joox
Now for

TXEX—i—Ax, TyEY+Ay
we have

Tx(foox)=—(Txf)oox; Ty(fooy)=—(Tyf)ooy.
and with a measure
dv = &' (x)(P(2))* ' (y)(P(y))**dxdyd=

the following formulas of integration by parts hold

/(Txf)gdv = —/f(Txg)dva /(Tyf)gdv = —/f(Tyg)dV-

Hence one can build up an interesting analysis in this case. We recall that a special case the
group with ®(z) = sinh(z), ¥(y) = y one can find e.g. in [15] (Ex.1.2.17). The DeMazur
operators in this case could be related to models with sinh ™2 interactions (for the theory of
completely integrable systems see e.g. in [37;65]).
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8.2. Nilpotent Lie Groups with more general T

Here we provide an example where number of A,’s are necessary in a natural way. We
consider generators of the form

X; =0, + Z Z Bjq 1,0y,

k#j;k<m m+1<I<n

with some constants Bjz; # 0, for 5 =1,...,mand all £ # j, I =m+1,...,n. Then each
X, admits a number of classical reflections o, k& # j, (i.e. reflections defined by matrices
with entries +1) which change the sign of j and k coordinates. In this case a function
xj — xy, is 0}, antisymmetric and can be used to define the following DeMazur operator

f—fOUjk
T — T

Ajkf =K

Next define

k#jk<m

If we introduce a measure

dv = H (z; — 2%)* d\n,

J#k;jk<m

with density involving VanDerMonde determinant. Then all 7;, j = 1,...,m, satisly in-
tegration by parts formula. One can redefine these operators by adding suitable DeMazur
operators A; corresponding to nonclassical reflections and defined with nonsymmetric func-
tions x;, provided we modify the measure by factors x?“.

There is also a more general conclusion out this example: For any classical crystal-
lographic group one has specific weights (as described e.g. in [36]) and a corresponding
Dunkl type theory. One can use this theory for coordinates in the [irst strata (of coordi-
nates of homogeneus dimension 1) and extend it to a nontrivial nilpotent Lie group case
(possibly multiplying weight by suitable product if one would like to add A, with non-
classical reflection). This point of view suggest an interesting classification of nilpotent
Lie algebras for which restriction of C'ox to coordinates in the first strata conicides with a
given classical crystallographic group (and for any classical crystallographic group there
exists infinitely many extensions).

9. Appendix: Functional Representation of Groups

An interesting problem is how to represent groups in terms of classes of functions with
operation of composition of functions and how to classify such representations.

Such framework is rich enough to accommodate infinite discrete groups. For example,
one knows that for any n € N, there exists an uncountable set of solutions of an equation

(pon:]l

in terms of continuous functions mapping a unit interval into itself, (cf. [53]).
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To illustrate the possibilities we provide here a functional representation of the celle-
brated Baumschalg — Soliltar group which is defined as folows, (cf. [18])
{a,b:a™'b"a = b"}.
By a direct computation one can show that such the group can be realised by
a = log® op o exp®(t)
b = log®™ oq o exp®*(t)
with £ = 54+ 1. Then
0™t = log® op! 0 exp (1)
b = log®™ og™ o exp®*(t).
And for £ > 7 we have
a 'b"a = log®™ op~! 0 1og® " og™ o exp®* ) op o exp®(t).
If we choose k = j + 1. Then we have
a~'b"a = log™ op~! o log og™ o exp op o exp (t)
= log™ olog o™ o exp op™'p o exp® (t)
= log™ o(q™"") o exp®(t) = bmr"
That is the group is realised for given m € N with n = mp~! provided p devides m,

although it is possible that the noninteger values of n could be realised in the framework of
functional equation theory.
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AHHoTauMsa. IJTO NpelBapUTe/bHAs CTAaThsl O KPUCTA/IOrPaUUeCcKUX Ipyl-
nax noseil Xepmannaepa. Mbl onucbiBaeM KapTHHY, BO3HUKAIOILYIO B aHaJHU3e pac-
IIMPeHHBIX I'pynn. B yacTHOCTH, MBI BBOOUM MOHSITHE U MPHUBOAUM MPUMEPHI KpH-
cTaJjJjorpapuueckux TPy, CBS3aHHBIX C CHCTeMOH rnoJsiell XepMmaHpaepa, a Takxke
00Cy2K/1aeM HeKOTOpble CBSI3aHHble BONPOCH! aHAN3a.

KuroueBble cjoBa: pacluupeHHble rpynmnel JIM, HEKOMMyTaTHBHbIE ONEPAaTOPHI
tuna Jlanksa, noayrpynnsl MapkoBa, oLeHKH siiep ypaBHEHUH TeNJoNpOBOAHOCTH
U SHTPOIHH.
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