www.volsu.ru

DOI: https://doi.org/10.15688/mpcm.jvolsu.2019.4.3

UDC 514.7 Submitted: 04.06.2019
LBC 22.151 Accepted: 03.10.2019

ON PSEUDO-SLANT SUBMANIFOLDS
OF NEARLY QUASI-SASAKIAN MANIFOLDS

Shamsur Rahman
PhD, Assistant Professor, Department of Mathematics,
Maulana Azad National Urdu University

shamsur@rediffmail.com
Polytechnic Satellite Campus Darbhanga, 846002 Bihar, India

Mohd Sadiq Khan

PhD, Professor, Department of Mathematics,
Shibli National College
msadigkhan.snc@gmail.com

Uttar Pradesh, 276001 Azamgarh, India

Aboo Horaira

Researcher, Department of Mathematics,
Shibli National College
aboohoraria@gmail.com

Uttar Pradesh, 276001 Azamgarh, India
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Introduction

The notion of a slant submanifolds as natural generallization of both holomorphic and
totally real immersions was given by B.Y. Chen [6]. Latter many research articles have been
~ appeared on the existence of these submanifolds in various known spaces. The properties
©) of slant submanifolds of an almost contact metric manifolds were studied by A. Lotta [10].
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L. Cabrerizo et. al [8] defined slant submanifolds of Sasakian manifolds. N. Papagiuc
[12] introduced and studied the notion of semi-slant submanifolds of an almost Hermitian
manifold. A. Carrizo [5;7] defined hemi-slant submanifolds. The contact version of pseudo-
slant submanifold in a Sasakian manifold have been studied by V.A. Khan et. al [11]. In [13]
the authors studied nearly quasi-Sasakian manifold.

The purpose of the paper is to study the notion of pseudo-slant submanifold of nearly
quasi-Sasakian manifold. In section 1 we recall some results and formula later use. In
section 2 we define pseudo-slant submanifold of nearly quasi Sasakian manifold. In section 3
it is concern with the integrability of the distribution on the pseudo slant submanifolds of
nearly quasi Sasakian manifold and obtain some characterizations. In section 4 we obtain
a classification theorem for totally umbilical pseudo-slant submanifold M of nearly quasi
Sasakian manifold M.

1. Preliminaries

Let M be a real (2n + 1) dimensional differentiable manifold endowed with an almost
contact metric structure (f,&,m, g), where f is a tensor field of type (1,1), & vector field, n
is a I-form and ¢ is Riemannian metric on M such that

(@) fP=-T+n®E () nE)=1, (c) nof=0,
(@) f(&)=0, (e) n(X)=g(X,¢), (1)
(f) g(fX, fY)=g(X,Y)=n(X)n(Y)

for any vector field X, Y tangent to M, where [ is the identity on the tangent bundle '/ of
M. An almost contact metric structure (f, &,m,¢g) on M is called quasi-Sasakian manifold if

(Vx )Y =n(Y)AX — g(AX,Y)E, (2)

Where_A a symmetric linear transformation field, V denotes the Riemannian connection of
gon M. If in a addition to above relations

(Vx /)Y +(Vy )X =n(Y)AX +n(X)AY —29(AX,Y)E, (3)

then, M is called a nearly quasi-Sasakian manifold. We have also on nearly quasi-Sasakian
manifold M )
Vx& = fAX. (4)

Now, let M be a submanifold immersed in M. The Riemannian metric induced on M
is denoted by the same symbol g. Let PM and P+M be the Lie algebras of vector fields
tangential to M and normal to M respectively and NV be the induced Levi-Civita connection
on M, then the Gauss and Weingarten formulas are given by

VxY = VxY + h(X,Y), (5)

VxV = —AyX + VLV (6)

for any X, Y € PM and V € PLM, where V* is the connection on the normal bundle
P+M, h is the second fundamental form and Ay is the Weingarten map associated with V' as

g(AvX, Y) :g(h(X> Y)>V) (7)
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For any X € PM and V € P+M, we write
fX=PX+VX (PXcPM and VX € P-M), (8)

fV=tV+4+nV (tVePM and nV € PTM). (9)

The submanifold M is invariant if V' is identically zero. On the other hand, M is anti-
invariant if P is identically zero. From (1) and (8), we have

for any X, Y € PM. If we put Q = P? we have

(VxQ)Y = VxQY — QVyxY, (11)
(VxP)Y = VxPY — PVyY, (12)
(VxV)Y =VxVY —VVxY (13)

for any X, Y € PM. In view of (5), (8), and (4) it follows that
Vxé = PAX, (14)

hX, &) =VAX. (15)
The mean curvature vector H of M is given by

n

1 1
H = Etrace(h) = Zh(ei,ei), (16)

=1

where n is the dimension of M and ey, ey, ..., €, is a local orthonormal frame of M. A sub-
manifold M of an contact metric manifold M is said to be totally umbilical if

hX,Y) =g(X,Y)H, (17)

where H is the mean curvature vector. A submanifold M is said to be totally geodesic if
h(X,Y) =0, for each X,Y € I'(PM) and M is said to be minimal if H =0 .

2. Pseudo-slant submanifolds of nearly quasi-Sasakian manifolds

The purpose of this section is study the existence of pseudo-slant submanifolds of
nearly quasi-Sasakian manifolds.
Definition 1. Let M be a submanifold of a nearly quasi-Sasakian manifold M. For each
non-zero vector X tangent to M at x, the angle 0(x) € [0,7/2], between fX and PX is
called the slant angle or the Wirtinger angle of M . If the slant angle is constant for each
X € I'(PM) and X € M, then the submanifold is also called the slant submanifold. If
0 = 0 the submanifold is invariant submanifold. If © = m/2 then it is called anti-invariant
submanifold. If ©(x) € [0,7t/2], then it is called proper-slant submanifold.

Now, we will give the definition of pseudo-slant submanifold which are a generalization
of the slant submanifolds.
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Definition 2. We say that M is a pseudo-slant submanifold of nearly quasi Sasakian mani-
fold M if there exist two orthogonal distributions D+ and Dy on M such that

1) PM admits the orthogonal direct decomposition PM = D+ @ Dy , & = T'(D).
2) The distribution D* is anti-invariant i.e., f(D+) C P+M.

3) The distribution Dy is a slant with slant angle © # 0, that is, the angle between
f(Dg) and Dy is a constant.

From the definition, it is clear that if 8 = 0 , then the pseudo-slant submanifold is a
semi invariant submanifold. On the other hand, if 6 = 7t/2, submanifold becomes an anti-
invariant.

On the other hand we suppose that M is a pseudo-slant submanifold of nearly quasi
Sasakian manifold A/ and we denote the dimensions of distributions D+ and Dy by d; and
ds, respectively, then we have the following cases:

1) If dy = 0 then M is an anti-invariant submanifold.

2) If dy =0 and 6 = 0, then M is an invariant submanifold.

3) If d, =0 and 6 # 0, then M is a proper slant submanifold with slant angle 6.
4) If dy.dy # 0 and 6 € [0,7t/2] then M is a proper pseudo-slant submanifold.

Theorem 1. Let M be a submanifold of a nearly quasi-Sasakian manifold M such that
§& € PM. Then M is slant if and only if there exists a constant N € [0, 1] such that

P?=-NMI-n®E&} (18)

Furthermore, in such a case if 0 is the slant angle of M then A = cos20.

Corollary 1. Let M be a slant submanifold of nearly quasi-Sasakian manifold M with
slant angle ©. Then for any X,Y € I'(PM) we have

9(PX, PY) = cos?(g(X,Y) —n(X)n(Y)), (19)

g(VX,VY) = sin®8(g(X,Y) —n(X)n(Y)). (20)

Let M a proper pseudo slant submanifold of a contact metric manifold M and the
projections on D+ and Dg by P, and P, respectively, then for any vector field X € I'(PM),

we can write
X =PX+BX —|—n(X)€. (21)

Now applying f on both sides of equation (3.4), we obtain

JX=fPX+ [RX

fhat s PX+VX =VPX + PP,X + VPX. (22)
We can easily to see

PX =PPRX, VX=VPX+VPX and (23)

fPRX=VPX, TPX=0, fPRBRX=TEhX+VRPX, (24)

TP,X €T(Dy). (25)
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If we denote the orthogonal complementary of fPM in DM by u, then the normal bundle
P+M can be decomposed as follows

PLM =V(DY) @ V(D) ® (26)

where w is an invariant sub bundle of P M as N(D+) and N(Dy) are orthogonal distribu-
tion on M. Indeed, g(Z, X) = 0 for each Z € I'(D+) and X € I'(Dg). Thus, by equation
(1) and (25), we can write

g(VZ,VX):g(fZ’fX>:g(Z,X):0, (27)

that is, the distributions V(D) and V(Dg) are mutually perpendicular. In fact, the decom-
position (26) is an orthogonal direct decomposition.

3. Integrability of Distributions

In this section we shall discuss the integrability of involved distributions.

Theorem 2. Let M be a pseudo-slant submanifold of nearly quasi Sasakian manifold M.
Then for all X,Y € D+ we have

Apy X — ApxY =Vx(PY) +h(X,PY) — Ayy X + V(VY) — 28)
—P(VxY) -V (VxY)-=V(h(X,Y)).
Proof. In view of (7), we get

9(An X, Z) = g(W(X, Z), [Y) = —g(fM(X, Z),Y). (29)
From (5) and (29), we get

9(Apy X, Z) = —g(fVzX,Y)+g(fVX,Y)
=—g(fVzX)Y) since [V X € P+M (30)
=9((Vz)X,Y) —g(Vz[X.Y).

Now, for X € Dy, fX € P+M. Hence, from (6) we have

Vi2fX =—AixZ + V5 fX. (31)
Combining (30) and (31), we obtain
9 A X, Z) = g(V2[)X,Y) + g(Asx Z,Y). (32)

Since h(X,Y) = h(Y, X), if follows from (7) that
g(Asz, Y) = g(Any, Z)
Hence, from (32) we obtain, with the help of (3),

9( A X, Z) — g(ApxY, Z) =n(Z)g(AX,Y) +n(X)g(AZ,Y) —
—29(AZ, X)n(Y) +9((Vx[)Y,Z) =
(Z2)9(AX,Y) +n(X)g(AZ,Y) — 29(AZ, X)n(Y) +

), 2) = (33)

=
+9(Vx(PY)+ Vx(PY) — f(VxY) — Y)
i Z.X)+

f(h(X,
(2)9(AX,Y) +n(X)g(AZ,Y) —2n(Y)g (A
+g(Vx(PY) 4 h(X,PY) — Ayy (X )+V§((VY)
—P(VxY)=V(VxY) - P(h(X,Y) - V(h(X,Y))), Z).
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Since X,Y,Z € D% an orthonormal distribution to the distribution (&) it follows that
n(X) =n(Y) = 0. Therefore, the above equation reduces to

AfyX — Any = Vx<PY) + h(X, PY) — Ava + V&(VY) —
—P(VxY)-V(VxY) -V (h(X,Y)).

Theorem 3. /n a pseudo-slant submanifold of a nearly quasi Sasakian manifold is
given by

(VxP)Y = Ayy X + ApxY + th(X,Y) +1(Y)AX +n(X)AY —
—29(AX,Y)E + Vy(PX) + P(VyX) + P(h(Y, X)).

(34)
Proof. Let XY € PM, we have
VxfY = (Vxf)Y + f(VxY)
From (8) and (9), we obtain
VxPY +VxVY = (Vx /)Y + f(VxY + h(X,Y))
Also from (8) and (9), we obtain
VxPY +VxVY = (Vxf)Y + P(VxY) +V(VxY) +th(X,Y) + nh(X,Y)

Using (5) and (6) from above, we obtain

VxPY +h(X,PY) - Ayy X + VEVY =n(Y)AX +n(Y)AX —

—29(AX,Y)E+ P(VxY)+ V(VxY)+th(X,Y)+nh(X,Y)—

—VyPX — h(Y,PX) + AyxY — V$VX + PVy X +
HVVy X + P(WY, X)) + V(R(Y, X)).

(35)

Comparing tangential and normal parts, we obtain

VxPY — Apy X =n(Y)AX +n(X)AY — 2g(AX,Y)E+ P(VyY) +
Hh(X,Y) + Vy(PX) + ApxY + P(Vy X) + P(h(Y, X)). (36)

That is,

(VxP)Y = Ay X + AyxY +th(X,Y) +n(Y)AX +n(X)AY —

—29(AX,Y)E+ Vy(PX) 4+ P(VyX) + P(h(Y, X)). (37)

Theorem 4. Let M be a pseudo-slant of a nearly quasi Sasakian manifold M. Then the
anti-invariant distribution D= is integrable if and only if for any Z,W € I'(D%).

AvwZ + Ay W + 2TV ;W + 2th(W, Z) = —(W)AZ —n(2)AW + 29(AZ, W)E. (38)
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Proof. Let Z,W € T'(D}) and using (3), we obtain
(V2 )W + (Vw ) Z =n(W)AZ +n(Z)AW — 29(AZ,W)E,
which is equivalent to
VofW — fV W + VW — fVwZ =q(W)AZ +n(Z)AW — 2g(AZ, W)E.
By using (5), (6), (8) and (9), we obtain

NW)AZ +0(Z)AW —29(AZ,W)E = VzNW — TV ;W — VNV W — th(W, Z) —
—nh(W,Z) + VWV Z — TVwZ — VVwZ — th(W, Z) — nh(W, Z).

So we have

N(W)AZ +n(2)AW — 2g(AZ, W) = —AywZ + VLVW = TV ;W — VV W —

Corresponding the tangent components of the last equation, we conclude
—M(W)AZ —n(Z2)AW +2g(AZ, W)E = Ayw Z + TN ;W +2th(W, Z)+ Ay ;W + TV Z.
From the above equation, we can infer

(W)AZ —n(Z)AW + 2g(AZ,W)E = ApwZ + Ay, W + 2TV ;W —
—~T(V W —VwZ) + 2th(W, Z)
T(Z, W] = AywZ + Ay W + 2TV ;W + 2th(W, Z)+
MW)A+n(Z2)AW —29(AZ, W)E

Thus [Z, W] € T(D%) if and only if (38) is satisfied.

Theorem 5. Let M be a pseudo-slant submanifold of a nearly quasi Sasakian manifold
M. Then the slant distribution Dy is integrable if and only if for any X,Y € T'(Dy)

P{VxPY — PVyX + (VyP)X — AyxY — Ayy X — 2th(X,Y) — 39)
—n(Y)AX —n(X)AY +29(AX,Y)E} = 0.

Proof. For any X,Y € I'(Dg) and we denote the projections on D+ and Dy by P, and P ,
respectively, then for any vector fields X,Y € I'(Dy), by using equation (4), we obtain

(Vx )Y +(Vy )X =n(Y)AX +n(X)AY — 29(AX,Y)E

or
VxfY — fVxY + VyfX — fVy X =n(Y)AX +1(X)AY — 2g(AX,Y)E.

By using equations (9), (6), (8), and (9), we can write

VxPY +VxVY — f(VxY + h(X,Y)) + VyPX + Vy VX —
—f(VyX + h(X,)Y)) =n(Y)AX + n(X)AY —2g(AX,Y)é+
+VxPY +h(X,PY) - Ayy X + V%VY — PVxY —
~VVxY —th(X,Y) —nh(X,Y) + VyPX + h(Y, PX) —
—AnxY + VVX — PVy X —VVy X — th(X,Y) —
—nh(X,Y) =n(Y)AX +n(X)AY —2¢(AX,Y)¢E

(40)
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From tangential components of (40) reach

VxPY — PVxY + (VyP)X — Ay XY — AyY X — 2th(X,Y) =

Z (Y)AX +n(X)AY — 29(AX, Y)E, (41)

P[X,Y] = VxPY — PVxY + (VyP)X — Ay XY —
—AYY X — 2th(X,Y) —n(Y)AX —n(X)AY + 29(AX,Y)E.

Applying P; to (42), we get (39).

(42)

Theorem 6. Let M be a pseudo-slant submanifold of a nearly quasi Sasakian manifold
M. Then the distribution D+ @ &, is integrable if and only if for any Z,W € I'(D+ @ &)

AW — Apy 7 = %[n(AZ)W —n(Z)AW +n(W)AZ = n(AW)Z].

Proof. For any Z,W € I'(D*+ @ &) and U € T'(PM) , by using (7), we can write
29(ArzW,U) = g(W(U, W), fZ) + g(h(U, W), fZ).
By using (5), we have

29(ApzW,U) = g(VwU, fZ) + g(NVuW, fZ) =

So we have

29(Ap,W,U) = g(Vw HU + (Vu f)W, Z) —
_g<vaU7 Z) - g(vaW, Z)

By using equation (3), we obtain
29(ApzW,U) = gm(U)AW +n(W)AU —29(AW,U)E, Z) — g(Vw fU. Z) — g(Vu fW, Z) =
= gM(AW)Z +n(W)AZ — m(AW)Z,U) — g(fVWZ,U) + g(AywU, Z) =
= gMAW)Z +(W)AZ —20(AW)Z — PNw Z —th(Z,W),U) + g(Asw Z,U)

which is equivalent to

24p, W =n(W)AZ —(AW)Z + AywZ — PNwZ — th(Z,W). (43)
Take Z = W in (43), we infer

24w Z =n(2)AW —n(AZ)W + AW — PV ;W —th(W, Z). (44)
By using equation (43) and (45), we obtain

AW — A Z) = PLZW] - n(Z)AW 4 n(AZ)W 1 n(W)AZ —n(AW)Z,  (45)

thus the distribution D+ @ & is integrable if and only if P[Z, W] = 0 which proves our
assertion.
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4. Totally umbilical pseudo-slant submanifolds

In this section we shall consider M as a totally umbilical pseudo-slant submanifold of
nearly quasi Sasakian manifold M. We have the following preparatory results.

Theorem 7. Let M be a totally umbilical pseudo-slant submanifold of a nearly quasi
Sasakian manifold M. Then at least one of the [ollowing statements is true,

1) dim(Dt) =1,
2) Hel(p),
3) M is proper pseudo-slant submanifold.

Proof. Let Z € T'(D* and using (3), we obtain
(V2£)Z =n(2)AZ — 9(AZ, Z)E,
VoVZ—~f(NzZ+NWZ 2)) =n(2)AZ — g(AZ, Z)E,
From the last equation, we have
~ Ay Z + NGV Z — NV, Z —th(Z,Z) —nh(Z,2) =n(Z)AZ — g(AZ, Z)E.  (46)
From (12) and from the tangential components of (46), we obtain
AvzZ +th(Z,72) = m(Z)AZ + g(AZ, Z) PE. (47)
Taking the product by W € I'(D+), we obtain
9(AvzZ +th(Z,2) +n(Z2)AZ — g(AZ, Z)PE, W) = 0.
[t implies that
g(MZ, W), NZ) + g(th(Z,Z2), W) +n(2)g(AZ, W) — g(AZ, Z)g(PE, W) = 0. (48)
Since M is totally umbilical submanifold, we obtain
9(Z,W)g(H,VZ) +9(Z, Z)g(tH, W) +n(2)g(AZ, W) — g(AZ, Z)g(PE, W) =0, (49)

that is
—g(tH, Z)W + g(tH,W)Z + g(AZ,W)& — g(PE, W)AZ = 0. (50)

Here tH is either zero or Z and W are linearly dependent vector fields. If tH # 0, then
dimI'(Dt) = 1.

Otherwise H € I'(u). Since Dg # 0, M is pseudo-slant submanifold. Since 8 # 0 and
dy,ds # 0, M is proper pseudo-slant submanifold.

Theorem 8. Let M be totally umbilical proper pseudo-slant submanifold of nearly quasi
Sasakian manifold M . Then M is an either totally geodesic submanifold or it is an anti-
invariant if H,V+H € T'(u).
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Proof. Since the ambient space is nearly quasi Sasakian manifold, for any X € I'(PM), by
using 3, we have
(Vx )X =n(X)AX - g(AX, X)EV [X — [VxX =n(X)AX — g(AX, X)E. (1)
Using (5), (7), (8) and (12) in (51) and we get

VxPX —g(X,PX)H — AyxX + VxVX =
= fVxX +g9(X, X)fH +n(X)AX — g(AX, X)&.

(52)
Applying product fH to the above equation we get
9(VXVX, fH) = g(VVxX, fH) + g(X, )| H|" = g(AX, X)g(VE, fH)  (53)
taking into account (6), we get
g(VxVX, fH) = g(X, X)|H|* — g(AX, X)g(VE, fH). (54)
Now, for any X € I'(PM) , we obtain
VxfH = (Vxf)H + fVxH. (55)
In view of (6), (8), (9), (17) and (55) we obtain
~ApX + Vi fH = (Vxf)H — PAgX —VAyX +tVxH +nViH. (56)
Applying product VX to the above equation we get
g(VxfH,VX) = g(Vx)H,VX) = g(VAz X, VX),
9(Vx[fH,VX)=g((Vxn)H + h(tH,X) + VAz X, VX) — g(VAz X, VX).
By using (7), (17) and (20), we have
9(VxfH,VX) = —sin? 0{g(X, X) | H|P = g(h(X, &), HIn(X)}.
From (15), we obtain

9(Vx[H,VX) = —sin 0{g(X, X)| H|*},
9(VxVH, fX) = sin? 0{g(X, X)| H||*}.

Thus, (54) and (57) imply

9(X, X)|H|* = sin® 0{g(X, X) || H |},

cos? 0g(X, X) | |12 = 0. (58)

From (58), we conclude that g(X, X)||H||> = 0, for any X € T'(PM). Since M proper
pseudo slant submanifold of nearly quasi Sasakian manifold we obtain H = 0. This tells us
that M is totally geodesic in M.

Theorem 9. Let M be totally umbilical proper pseudo-slant submanifold of nearly quasi
Sasakian manifold M. Then at least one of the [ollowing statements is true.
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1) Hepn

2) 9(Vpx§&, X)=0.

3) n((VxP)X) = 0.

4) M is a anti-invariant submanifold.

5) If M proper slant submanifold then, dim(M) > 3, for any X € T'(PM).

Proof. From equation (3) and M is nearly quasi Sasakian manifold, we have
VxfX — fVxX =n(X)AX — g(AX, X)E.
By using (5), (6), (8) and (9), we have
VxPX +h(X,PX) - Ay XX +VxVX — PVxX —

VX — th(X, X) = nh(X, X) = n(X)AX — g(AX, X)E (59)
tangential components of (59), we obtain
VxPX — PVxX —th(X,X) — AyxX =n(X)AX. (60)

Since M is a totally umbilical pseudo-slant submanifold, by using (7) and (17), we can write
9(Avx X, X) = g(h(X, X),VX) = g(H,VX)g(X, X) = g(g(H, VX)X, X) = 0. (61)
If H € '(n), then from (60), we obtain
VxPX — PVxX =n(X)AX.
Taking the product of (61) by &, we obtain
g(VxPX &) —n(PVxX) =n(X)n(AX)g(VxPX, &) =0. (62)
Interchanging X by PX in (62), we derive
g(VexP*X, &) =0 = g(VpxE P°X) =0
by using (18), we have
d(Vpxé, —cos?0(X —n(X)E) =0 = cos’0g(Vpxé, (X —n(X)E) = 0.
Since, M is a proper pseudo-slant submanifold, we have
9(Vpx&, (X —n(X)E) = 0.
From which
9(Vpx& X) =n(X)g(Vpx&, &). (63)

Now, we have g(&,&) = 1. Taking the covariant derivative of above equation with respect
to PX for any X € T'(PM), we obtain g(Vpx&, &) + g(& Vpx&) = 0 which implies
9(Vpxé&, &) =0 and then (63) gives

9(Vpx&, X) = 0. (64)
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This proves 2) of theorem.
Now, Inter changing X by PX in the equation (64), we derive

9(Vpex &, TX) = g(Veos2 o(—x4m(x)5) & PX) = 0,

cos? 09(V(—xmx)p& PX) =0,
—cos? 0g(Vx&, PX) + —cos® 0n(X)g(Ve&, PX) = 0.
Since V& = 0, we obtain

cos?0g(Vx&, PX) = 0. (65)

From (65) if cos® = 0, 6 = 7/2 then M is an anti-invariant submanifold. On the other
hand, g(Vx&, PX) = 0, that is Vx& = 0. This implies that & is a the Killing vector field
on M. If the vector field & is not Killing, then we can take at least two linearly independent
vectors X and PX to span Dy, that is, the dim(M) > 3.

Example 1. Suppose M be a submanifold of R” with coordinates (zy, s, %3, Y1, y2, y3, W),
defined by

21 = V3usinh «, £y = —v cosh «, 23 = ssinh z,
y1 = vcosh o, yo = 2v cosh &, y3 = —ssinh z,t = w,

where u, v, s and z denote the arbitrary parameters. The tangent bundal space of M is
spanned by tangent vectors.

e1 = V/3sinh ocai, es = cosh oca— — cosh oca— + 2 cosh ocai,

1 231 1) Y2
e3 = sinh z—— — sinh zi, e4s = scosh zi — scosh zi
T3 ys T3 Y3
For the almost contact metric structure ¢ of R7, choosing
0 0 0 0 0
= —) = —— —)=0, 1<1,5<3,

and & = %,n = dt. For any vector field W = “ia%i + Vja%j + )‘a% € T(R"), then we have

0]
$Z = p—

v 7 &7 = u? 2

9(Z,Z) =i +vi+ N, n(Z2)=g(Z,E) =\
and P o 9 0
2 — s — — e - - = —
¢O°Z = uzaxi Vjayi }‘at + )\at Z+n(2)E

for any 4,7 = 1,2,3. It follows that g(¢Z, $Z) = g(Z,Z) —n*(Z). Thus (d,&,m,g) is an
almost contact metric structure on R”. Thus we have

de, = V3sinh oci, des = —cosh oci — cosh oci — 2cosh oci,
8y1 Oy ayQ 0z
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0 0
$e3 =sinh z— 4 sinhz—, ey = scosh z— + scosh z—.
8y3 81173 ayS T3

By direct calculations, we can infer Dy = span{ey, e} is a slant distribution with slant

angle 0 = cos™ (). Since

9(¢€3, 61) = 9(4363, 62) = 9(43@3,64) = 9(4363765) =0,
g(dbeq, e1) = g(dbeq, e2) = g(dbeq, e3) = 9(4364765) =0,

es3 and ey are orthogonal to M, D+ = span(es,e,) is an anti-invariant distribution. Thus
M is a 5-dimensional proper pseudo-slant submanifold of R7 with its usual almost contact
metric structure.
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AHHOTaI.[I/IH. B pa60Te Hn3ydaeTcs FGOMeTpI/IH [ceBA0-HAKJ/JOHHBIX ITOAMHOTI'O-
o0Opa3uil 6JIM3KO KBa3HU-CacaKUeBbIX MHOrooOpasuil. [lokasaHo, 4TO BIOJHE OMOHU-
JIMUueCKoe MPaBUJIbHO HAKJOHHOE MHOroo6pasre OJM3KO KBa3n-cacakueBa MHOT000-
pasus fIBJseTCS BIOJIHE Te0fe3UUeCcKHM, eCld BeKTOp cpelHel KpUBU3HBI [ € L.
TaK}Ke [MOJIYy4€HbI YCJIOBUSA I/IHTeI‘pI/IPYEMOCTI/I pacnpeneﬂeHI/Iﬂ nceBJ0-HAaKJIOHHBIX
noaMHoroo6pasuil 6/1M3KO KBa3H-CaCaKHeBBIX MHOT00Opa3uil.

KaroueBble cjoBa: O/1M3KO KBas3H-cacakHeBbl MHOrooOpasusi, HaKJOHHbIE
MHOT000pa3usi, TpaBUJbHbIE HAKJOHHBIE TMOAMHOT000pa3usi, MCeBIO-HAKJIOHHbBIE
NoAMHOroo6pasusi.
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