www.volsu.ru

DOI: https://doi.org/10.15688/mpcm.jvolsu.2020.2.7

UDC 538.915+4975; 544.22.022.343; 544.225.22+25 Submitted: 31.10.2019
LBC 24.5 Accepted: 20.01.2020

DYNAMICS OF THE MAGNETIZATION OF A SINGLE-DOMAIN
DEFORMED SOFT MAGNETIC FERROMAGNET

Igor P. Yermolenko
Student, Department of Theoretical Physics and Wave Processes,
Volgograd State University
yermolenkoigor@volsu.ru
Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

Nikolay G. Lebedev

Doctor of Physical and Mathematical Sciences, Professor,
Department of Theoretical Physics and Wave Processes,
Volgograd State University

nikolay.lebedev@volsu.ru

Prosp. Universitetsky, 100, 400062 Volgograd, Russian Federation

Abstract. On the basis of the quantum model taking into account the Zee-
man energy and the energy of the crystal field, dynamic equations of Landau —
Lifshitz — Hilbert type for the magnetization of the deformed single-domain o-Fe
crystal are obtained. The domain deformation is taken into account in the frame-
work of a linear approximation. The equations of motion are solved numerically
using the Adams — Multon, Rosenbrock, and RADAUS methods. It is shown that
for some values of the model parameters, the dependence of the magnetization on
the strength of an external magnetic field has the characteristic form of a hys-
teresis loop. Qualitative agreement of the model dependence of the coercive force
on the applied longitudinal pressure with similar experimental data for various
steel grades Durehete 1055, AS1548-7-460R, X70, 11HN3D is obtained.
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Introduction

The micro-magnetic theoretical calculation of the distribution of magnetization in sam-
ples of ferromagnets of various nature and structure is one of the most important areas of
world research on the properties of magnetic materials. A rigorous analytical description
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of the magnetization dynamics encounters numerous difficulties that are overcome by con-
structing mathematical models, such as Stoner-Wolfart, Giles-Atherton, Hauser, and others,
based on solving nonlinear differential equations [13].

In addition to the fundamental importance, the construction of phenomenological mod-
els of magnetic materials has practical significance. In particular, an experimental and
theoretical study of the magnetic response of a sample to its deformation (the Villari effect)
is carried out for more than a century [5;8]. In [15], the author experimentally studied the
dependence of the parameters of the magnetic hysteresis loop of steel on the magnitude of
the relative deformation. In particular, the nonlinear dependence of the coercive force of the
studied samples on the magnitude of the uniaxial strain is shown. Similar dependences are
obtained in [3;4].

One of the first approaches to constructing a model of magnetomechanical interactions
in ferromagnetic dielectrics is the paper [16]. In the framework of the approximation of
a continuous medium and a spin continuum, the author is obtained a system of coupled
differential equations and boundary conditions for describing the macroscopic behaviour of
non-conducting saturated ferromagnets subject to strong deformations.

In [6;7], authors are developed a quantum model of a soft magnetic single-domain
ferromagnet without mechanical stresses in weak magnetic fields using the example of
the «-iron crystal. Using the constructed model Hamiltonian in the framework of the
Heisenberg representation, nonlinear equations of a motion (Landau-Livshits-Hilbert type
equations) are obtained for a magnetization and an orbital domain momentum taking into
account a magnetic friction introduced phenomenologically through a magnetic field created
by conduction currents in crystals. Two series of numerical experiments are carried out: for
single domain and a set of domains with uniform distributed easy magnetization axes, in
which the dependence of the projection of magnetization on the external magnetic field is
calculated. In both cases, the calculated dependence has a characteristic hysteresis loop. In
the multi-domain case, characteristic Barkhausen jumps are observed on the loop, arising as
a result of a magnetization jump from one region of stable equilibrium to another for each
domain.

In [14], the micro-magnetic approach developed in [6;7] is applied for modelling a
deformed magnetic soft ferromagnet. Nonlinear dynamic Landau — Livshits — Gilbert
type equations are transformed to a Bloch — Bloembergen type equation. On the basis of
the numerical solution of the equations, the qualitative and quantitative agreement of the
nonlinear dependence of the coercive force of a ferromagnet on the magnitude of uniaxial
deformation with experimental data given in [3;4; 15] is obtained.

In this work, the microscopic model from [7] is applied to study the dynamics of
a single-domain deformed magnetically soft ferromagnet using the example of the «-iron
crystal. The numerical solution of the initial dynamic Landau — Livshits — Hubert type
equations is carried out. The dependence of the parameters of the hysteresis loop on the
magnitude of the uniaxial strain is studied.

1. Model of single-domain ferromagnet deformed
The model of ferromagnet deformed is constructed in accordance with [7]. The effec-
tive Hamiltonian of single domain of a magnetically soft ferromagnetic with volume v is

constructed as the sum of the crystalline field Hamiltonians fIK and Zeeman ﬁz interac-
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tions: R X
H:HZ_'_HKa (1)

Zeeman energy operator of the domain in the external magnetic field strength H have
known term:

Hz = —guppoJHe. (2)
Where pup = eh/2m is Bohr magneton, g is the permeability of a vacuum, g is the Lande
factor, H is the external magnetic field, J is the total mechanical momentum operator of a
domain.

After applying the method of the equivalent operators [1;11] an effective crystal field
Hamiltonian is obtained:

R N
62 5-7! ap 4
oy = ~b04eV, W=97 — ) &= 2.5ueV.
07 dmega v 08 <2Za> Hev:

where a = 2.86A is the parameter of bcc «-Fe crystal lattice [2], ag = 0.53A is Bohr radius,
Z is atomic number, ¢q is the dielectric constant, e is an elementary charge, N = v/a3 is
the number of elementary cells in the domain, j(x is the a-component (x = x, y, z) of the
total mechanical momentum operator of a domain.

The deformed state of the crystal sample is characterized by the symmetric part of the
distortion tensor — the strain tensor usg [9]. An arbitrary point r of the crystal is displaced
to a new position r’, associated with the original by known relation:

/ ~ / ~
' =14 Ur, ry, =7re+ Usplp = o + (Ur)q,

12 2
To = To + 2UxpTalp + UapUay TRy,

/

= (12 4 2UapT ol + UnplionTpTy) %, (4)

where «, 3, v = x, y, z. As a result of a deformation the crystal field of a ferromagnet,
whose potential comprises power functions of electron coordinates, is changed:

4
7 =+ Ardugpry + 615 (uaprp)? + Ara(uaprp)® + (’U/(XBTB>4,
Pt = (Ti + 2unpTalp + u“ﬁuﬁyrcxry)Q =
= b AP ugprarp + 27 UapUpy Taly + A(UapTarp)? + .. (5)

Accounting linear terms of deformation leads to the following transformation:

r;f ~ fri + 473 (ir) o,

Pt = (ri + 2uaprarp + u‘xﬁuﬁyr“ryf ~ rt + 4r’rar. (6)

Accounting only linear term of deformation, the energy of the domain in the crystal
field (3) of the deformed crystallite after transformation (6) becomes next:

— 84 I.P. Yermolenko, N.G. Lebedev. Dynamics of the magnetization of a single-domain



PHNU3UKA U ACTPOHOMH {

140%g - 3 (0) (1) @)
0 4 4 4 4 0 1 2
WK - a4 7; <x/n + y/n + Z/n - grln) = WK + WK + WK )

where W[(f) is the domain energy in the undeformed crystal expressed by the formula (3),
W}? and W[(f) are components of the magneto-elastic energy domain:

560@

W) == Z{r UapTp b, (7)
d

Wl(f) 336 OZT {uaprarp }n- (8)

After applying the method of equivalent operators [1;11] and the transition to the
domain operators with the LS-binding approximation, formulas (7) and (8) are represented
as operators:

. p
AY = - W(J<3>uJ+JuJ ) (9)
3 11520 + -
a1 = ;NWJUJ (10)

where it is introduced the vector J®) = {Jjj, g2, Jf}

Formulas (9) and (10) represent operators of the magneto-elastic energy of a ferromag-
net in the framework of approximations described above.

Averaging operators of the total angular momentum J, = <jl> over a domain, it can
obtain the equation for the averages in the Heisenberg representation:

dJ T /(s =
o () m
According to the commutation rules [10]:
|:j¢x, jﬁ} = iﬂaﬁyjy,

where e4p, is anti-symmetric unit tensor, one can calculate the commutators of the total
angular momentum to switch components of the Hamiltonian (1) in the approximation of
neglecting the dispersion of moment operators:

3,00 = |ewa, Jp| Hy = itagreatpdy =i [H x 3],
3. (02) | = 4i(5) [ea < 3],
[j,uﬁyjﬁjy] — [eaja,u,gyjﬁjy} — 2 [ﬁj X j] :
Fougy (J3J, + Ty J3) | =20 | (@) x J| +6i | (J3 (eptd))ep x I|.  (12)
B
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The end result that in the framework of Heisenberg representation the nonlinear equa-
tions of motion of a total mechanical momentum of a domain are obtained [7][10]:

& = —noy [I x H] — 3 |I@ XJ} + 2% [(87) > J] -

— A [(ﬁj(i’»)) X j} + 2 (jf( (eaﬁj)) ey X j} ,
where v = gup/h is gyromagnetic ratio, e, are unit vectors of the easy magnetization axes,
x = x7 y? Z. fal

To transformation to the macroscopic model, the following quantities: m = —gug(J)/v
is the domain magnetization and M, = 2gugN/v is the saturation magnetization of the do-

main with the momentum value J = 2N are introduced. Then the dynamic equations of
macroscopic magnetization motion take the form:

(13)

% = noy [(He + Hi) x m], (14)

where the crystal field strength of a domain:

o ME

In the expression (15) there are introduced the unit tensor notation I, unit vectors of
easy magnetization axes a, b, ¢ coincident with the crystallographic axes [100], [010] and
[001] of «-Fe crystal, and the crystal field constants:

32W
Mg = : (16)
HoHBY
Introducing the dimensionless time T and the intensity of the alternating magnetic field

h = hgsin(wt) according to the rule:

29M um. (15)
S

Hy <i + ﬁ) <(ma)3a + (mb)°’b + (mc)3c> -

H
H, = Hob, YioHy =, t=c-, hy =" (17)
Qo Qo
finally it is obtained the dimensionless dynamic equations of motion:
dm
— =(h.+h : 18
dt (he + hg) X m (18)
To account for the magnetic friction the Landau damping is added as follow:
d d
d_T”[d_Txm}:(hﬁhK)xm, (19)

where o« is damping coefficient taking into account the interaction of the local moment
electrons to the conduction electrons.

In this case, the final equation of motion of the dimensionless magnetization of a
domain becomes next:

dm -~

- = A(m) [(he + hg) x m], (20)
where A(m) is the matrix defined components of the magnetization vector:
B 1 oam,  —axmy,\
A(m)= | —am, 1 oMy,
XMy, — XMy, 1
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The discussion of results

The system of equations (20) is solved by Runge — Kutta type methods. And as
complexity and hardness appear, the use of special techniques such as the Adams-Moulton,
Rosenbroke and RADAUbS [12] is required. RADAUSbS algorithm is based on the implicit
fifth-order Runge — Kutta method, using quadrature Radau intended for solving systems
of differential equations of different types (including “hard”). The results of the numerical
solutions of equations (20) are shown in Figs.

Figure 1 shows the dependence of the projection of the domain magnetization of «x-Fe
in the magnetic field direction on the value of the applied magnetic field strength. As it
follows from the figure, the solution obtained has a characteristic form of the hysteresis loop.
The oscillations in the vicinity of the coercive force can be explained by the appearance
of numerical instabilities when switching the magnetization of the domain between two
stationary solutions.

Figure 2 shows the dependence of the coercive force H of «-Fe single domain on the
applied longitudinal pressure p = o,,, calculated over tensile deformation with the help of
Young’s modulus E = 2 - 10! Pa. These results demonstrate directly the Villari effect,
i.e. the dependence of the magnetization on the relative deformation. As seen from the
figure, the calculated and locally smoothed by adaptive algorithm based on the analysis of
the nearest neighbours of each data pair, the dependence is not linear in spite of the linear
approximation with respect to a sample deformation. This is due to the nonlinearity of
dynamic equations (20), which is caused by the influence of a cubic crystal field.

Comparison of the results (Figure 2) with the experimental data for various kinds of
steels from [3;4; 15], is shown its qualitative agreement. Therefore, the proposed in [14],
the deformed ferromagnet model can adequately describe the various manifestations of the
Villari effect.

sl . - .
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Fig. 1. The dependence of the z-component of the magnetization m, of a-Fe crystal single domain
on the value of the alternating magnetic field h(t). Used parameter values: My = 3.1 x 10% M3,
w=1, «a=0.04, u,, = 0.4, hg = 400

2. Conclusion
Within the framework of the quantum approach the magnetization dynamics of single-

domain deformed o-Fe crystal with the Zeeman interaction and the crystal field is studied.
Initial conditions and phenomenological parameters, under which the solution of the nonlin-
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Fig. 2. The dependence of the coercive force H¢ of a-Fe single domain on the applied longitudinal
pressure p = 0,,, calculated over tensile deformation with the help of Young’s modulus £ = 2-10'1
Pa. Used parameter values: Mg = 3.1 x 10> M3 , w =1, ac = 0.04, u,, = 0.4, hy = 200

ear equations of motion by the numerical Rosenbroke method has a characteristic dependence
of the magnetization on applied magnetic field intensity in the form of the hysteresis loop,
are selected. It is shown that within the linear approximation of the strain the dependence
of the coercive force of the «-Fe single domain on the applied longitudinal pressure qualita-
tively coincides with the experimental curves for samples of various types of steel (Durehete
1055, AS1548-7-460R, X70, 11HN3D). Quantitative agreement between model results for
these steel grades, but in the framework of the quadratic deformation approach, is shown
in [14].
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HeHusi tTuna Jlanpay — Jlupuwuua — I'mapbepra A5 HaMarHUUYeHHOCTH nedop-
MHUPOBAHHOTO OQHONOMEHHOro Kpucranna «-Fe. Yuer nedopmauuu nomeHa ocy-
leCTBJEH B paMKax JUHeHHOro npudauxkeHus. [losyueHHble ypaBHEHUS IBHKe-
HHS pellajiiCh YUCJEHHO C TOMoIIbi0 MeTonoB Anmamca — MyntoHa, Posen6poka
1 RADAUS. [lokasaHo, 4TO NpH HEKOTOPBHIX 3HAUEHHUAX MOMIEJNbHBIX MapaMeTpoB
3aBHCHMOCTb HaMarHMYEHHOCTH OT HaMpSI)KEHHOCTH BHEIIHEro MarHUTHOTO MOJIS
UMeeT XapaKTepHblH BUA MeTad rucrepesuca. [losyyeHo KauecTBeHHOe corsacue
MOJe/IbHOH 3aBUCHMOCTH KOIPLUTHBHON CHUJIB OT MPUJI0KEHHOTO TPOAOJIbHOIO J1aB-
JIEHHSl C aHAJOTHUHBIMH 3KCIePUMEHTaJbHBIMU NAHHBIMHU [J51 Pa3JUYHBIX Mapok
crased Durehete 1055, AS1548-7-460R, X70, 11 XH3 1.

KiroueBbie ciaoBa: MOJe/bHBIH raMuJIbTOHHAH, 3€€MaHOBCKasl dHEPTUus, KpU-
CTaJJ/Ju4YeCcKoe 1oJe, MarHuTHasd aHU30TPONKA, HAMarHH4€eHHOCTb, TUCTEPE3HUC.
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