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Abstract. Regularity of the transform of Laplace in the opened area of O is
proved with the help of some methods of the transform of Fourier. The class
of the transform of Laplace from the transiorm of Fourier is considered from
some functions without a regularity in null. The functions are regular in the
opened area of 0. It is proved that the sine transform of Fourier from the cosine
transform of Fourier is equal to the cosine transform from the sine transform of
Fourier on the module.
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Introduction

In article the methods of complex analysis are applied to research of the transform of
Fourier. The main part of the work is considered in the remark 1 and the proposition 2. As
a result we obtain a regularity of the double transform of Laplace in some open area of null
[3;4;6;7] (the remark 1); by definition, the f(z) function is regular in the z point, if in the
< point exists the df (z)/dz derivative. In the [7] work from the fact is proved, that the sine
transform is equal to the cosine transform of Fourier on the module (in the article the fact
is not proved fully). The methods of research of the article were first considered in the [3;4]
work of author. The proposition 1 in the non-obvious form was first considered in the [4]
article. From the propositions we obtain, that the sine transform of Fourier from the cosine
transform of Fourier is equal to the cosine transform from the sine transform of Fourier on
©) the module (theorem 1).
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By definition, the LZ(¢)(-)(z) function is the transform of Laplace
L2()()(x) = / e Z(1)dt, z € [0, 00),
0

and
o

LoZ(t)() (@) = / 7 (1) dt,x € [0,00), L = I,

o0

Fru(®)(-)(p) = / Pitu(t)dt, p € (—o0,00),
C’Ou(t)(-)(x):/u(t)cosmtdt, Sou(t)(-)(x):/u(t)sinxtdt,xe (=00, 00),

Fou(t)()(p) = / 2Pty (t)dt, p € (00, 00).

1. Regularity of the transform of Laplace and the transform of Fourier

In the section we use the Y1 and R1 conditions.
The Y1 condition takes place for the u(p) function, if the u(p) function is regular in
p:p€ G ={|Rep| <e|Imp| < e} for some ¢ > 0, u(0) =0, and

max[[u(p)], |du(p) /dp|, |d*u(p)/p*||[p***] = O, |p| — oo,

5 >0, d=const., Reu(x) =u(z),r € (—oo,c0).

The R1 condition takes place for the {1(p), L1(p), l2(p), Lo(p) functions, if the Iy (p), L1 (p)
functions are regular in left part of the complex plane for all Re < 0, the l3(p), Lo(p) func-
tions are regular in right part of the plane for all Re > 0, if the {1(p), L1(p), l2(p), L2(p)
functions are continuous for all p € (—ioco,i00) from the side of definition of the functions,
and the I1(p), L1(p), la(p), L2(p) functions are limited in the area of the definition (with the
values on the (—ioo,ic0) boundary):

sup ly(p) < co, sup Lo(p) < co;
Re >0 Re >0

sSup ll(p) S Co, SUp Ll(p) < Co, Co = CO?’LSt,CO < 0.
Re<0 Re<0

Proposition 1.

h(p) = Li(p) = La(p) — la(p) = 0,p = it t € (—00, 00),
if the R1 condition takes place for the l1(p), L1(p),l2(p), La2(p) functions, and

li(p) + la(p) = Li(p) + La(p), p = it, t € (—00, 0).
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Proof. We use l1(p) — Li(p) = La(p) — la(p),p = it,t € (—o0,00). From the R1 condition
the Lo(p) — l2(p) function is an analytical continuation of the [1(p) — Ly(p) function from
the left to the right part of the plane across the complex axis [2]. The functions are
limited in area of its definition and on the complex axis (—ioco,i00) (by the R1 condition).
The function is regular in the full complex plane and is limited in the plane. We obtain
l1(p) — L1(p) = La(p) — la(p) = const = 0. [?;?].

The proposition 1 is proved.

In the lemma 1 and the theorem 1 we consider the 1;(p), L1(p), la(p), L2(p) functions:
lL(p) = Ly Fou(t)()(p), Rep < 0;l2(p) = LF u(t)(-)(p), Rep > 0,

Li(p) = Ly Fou_(t)(-)(p), Rep < 0; Ly(p) = LFyu_(t)(-)(p), Rep > 0,

where ,by definition,
u_(t) = u(t),t € [0, +00),u_(t) = —u(t),t € (—00,0),

and for the u(p) function the Y1 condition takes place.

Lemma 1. 1) For the l1(p), L1(p),l2(p), Lo(p) [unctions the RI condition takes place,
if for the u(p) function the Y1 condition takes place.

2) li(p) + la(p) = Li(p) + La(p) = 2mu(p/i), p € G, if for the u(p) function the Y1
condition takes place.

Proof. The l1(p), Li(p), La(p), lo(p) functions (in the form of the Laplace transform) are
limited in the area of its definition and on the complex axis (—ioo,i00) (the fact is well-
known [3;4;6;7], if w(0) = 0, we use the Y1 condition [?;?] with help of the formula
of integration by parts in the inlying integral for the l;(p) = Ly F u(t)(-)(p), Li(p) =
= Ly Fou_(1)(-)(p). l2(p), La(p) functions [8]).

From the same formula of integration by parts we obtain, that the I;(p), Li(p), La2(p),
lo(p) functions are continuous for all p € (—ioo,ic0) from the side of definition of the
functions, if u(0) = 0.

It is obvious, the l;(p), L1(p), La2(p), lo(p) functions are regular in the area of its
definition without the (—ioo,i00) boundary (in the points exists the df (p)/dp derivative, if
for the u(p) function the Y1 condition takes place [8]).

The first part of the lemma 1 is proved.

From I, (1y) = lo(1y), L1 (1y) = La(iy),y € [0, +00), we obtain

2Rely(iy) = l1(1y) + l2(iy), L1 (iy) + La(iy) = 2Re Ly (iy), p = 1y,

y € [0,+00). We can use the inverse operator of the transform of Fourier [1], and
2Rel(iy) = 2mu(y), 2Re Li(iy) = 2mu_(y), y € [0,+00), where u(y) = u_(y), y €
€ [0, +00). We get

l(iy) + la(iy) = La(iy) + La(iy) = 2mu(y),y € [0,+00).
It is well-known, that the l;(p), lo(p) functions are regular for all p : p € {|Rep| <

< AU|Imp| < A > 0}, if the YI condition for the u(p) function takes place for some
e >A>0 [2-4].
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We can use, that from the RI condition the 1(p), Li(p), l2(p), L2(p) functions are
continuous for all p € (—ioo,i00) from the side of definition of the functions .

We get Ly(p) = 2mu(p/i) — L2(p), p € G, as the analytical continuation of the L;(p)
functions [2]) across the [0, +00) axis, and

li(p) + la(p) = L1(p) 4+ La(p) = 21u(p/i),p € Ga, A < ¢,

[2] (the equality takes place in the area of regularity of the u(z) function too, z = p/1).
The second part of the lemma 1 is proved.

Theorem 1. S°COu(t)(-)(x) + C°Su(t)(-)(x)) = 0, = € [0, +00), if for the u(p) function
the Y1 condition takes place, and Reu(t) = u(t),t [ 00).

Proof. To use the proposition 1 we mast prove, that [y (iy) + lo(iy) = Li(iy) + Lao(iy),y €
€ (—ioo,ic0).

From the lemma 1 we get the equality for y € [0, i00).

For y € (—i00,0) we will prove the remark 1.

Remark 1. The LLu(x)(-)(z) function is regular in {z: —A < Rez < A} for some A > 0,
if for the u(p) function the Y1 condition takes place with ¢ > A (we obtain, that the
LLu(x)(-)(z) function is non multiple-meaning function in {z: —A < Im z < A} [2;4]).

Proof. The LL(z) function is regular in Rew > 0, if LL(w) = LLu(x)(-)(z). The fact
we get from the LLu(z)(-)(z) = [[u(z)/(z 4+ x)]dx equality after a change of the limits of

0
integration in the LLu(z)(-)(z) function,Re z > 0 [8] (the derivative of LL(z) is defined in
Re z > 0 in the Y1 condition [2]).

The main part of the remark 1 is the proposition 2.

In formulation of proposition 2 the new definitions are used: the reflection of the
U(p) function in relation to the (A,0) point as the Us_,(p) function, U(p) = U(p — A +
+ A),Us(p) =U(—(p—A)+ A) = U(2A — p) ( (0,0) is the center of co-ordinates); the
2A-moving of the U(p) function is the U(p — 2A) function. It is obviously, if we will move
the U(p) function to the right on 2A value we obtain the U(p — 2A) function.

Proposition 2. 1) U(p—2A4) = Ua(p), (=p) =U(p),
Ip| < A >0, if the U(p) function is defined in |p| < A.

2) The V(p) =Y (p), |p — 2A| < A > 0 equality takes place, where the V(p) = Ua—(p)
function is the result of reflection of the U(p) function in relation to the (A,0)
point, and the Y (p) function is the result of reflection of the U(p — 2A) function in
relation to the (2A,0) point (the (0,0) point is the center of co-ordinates, and the
U(p) function is defined in |p| < A). The U(A — z) = Ua_.(p) equality takes place
for the (A,0Q) center of co-ordinates, z=p— A, Rep > A—a>0,a € (—00,00), if
the U(p) function is defined in Rep > A+ a (for all A > 0).

Proof. The first part of proposition we obtain from U(2A — p) = Ua_,(p), where U(2A —
—p) =U(p—2A), if and only if U(z) = U(—=z) ((0,0) is the center of coordinates).

The Ua_,(p) = U(2A — p) = V(p) equality takes place as the definition of the Ua_,(p)
reflection ((0,0) is the center of co-ordinates). The 2A-moving of the U(p) function is the
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U(p — 2A) function; the result of the reflection of the U(p — 2A) function in relation to the
(2A,0) point is the Y(p) function:

Y(p) =U((4A —p) —24) = U(2A —p) = V(p).
The second part of proposition we obtain from the Y (p) = ( ) equality for the new center
of co-ordinates in the (A, 0) point. In the U(—(2—A)) = Ua_(p) equality Us_,(p) = U(—=2)
,z2=p—A, Rez >0, if we consider the U(—z),U(— ( A)) function as the comparison

of points of the complex plane to the points on other plane (with z = p — A).
The proposition 2 is proved.

With help of the proposition 2 from U(—(z — A)) = Ua~(p) = U(—2) with U(—z2) =
= LL(z) we obtain, that the LL(z) is regular in Rez > —A < 0, if the U(—z) function is
regular for all z: Rez > 0 [2] (the U(z) function from the second part of the proposition 2
is defined for all Rep > A+ a,a = A).

The remark 1 is proved.

From the second part of the lemma 1 we obtain L;(iy) + Lo(iy) = 2mu(y),y € [0, i00).

From the remark 1 the L;(p) function is regularin p:p € {—A < Rep < A > 0} (we
use, that the L;(p) function is equals to the sum of the two values of the double transform
of Laplace [1;8]).

We get Ly(p) + L2(p) = 2mu(p/i),p € G4 for some A > 0 [2], and L, (iy) + Lo (iy) =
= 2mu(y),y € (—ioco,0).

It is well-known, that the [;(p),lo(p) functions from the lemma 1 are regular for all
p:p€{|Rep| < AU|Imp| < A >0}, if the u(p) function is regular in p: p € {|Rep| <
<eJ[Imp| < ¢} for some ¢ > A >0 [2-4].

The {1 (iy) + l2(iy) = Ly (iy) + La(iy),y € (—ioco,ic0), is proved.

We can use the proposition 1, and

li(p) — Li(p) = La2(p) — l(p) = 0.

(All other conditions of the proposition 1 are the result of the first part of the lemma 1).
The result of the theorem 1 we obtain from

0=1la(p) — La(p) =2 / e Ptdt | e u(x)dr =
0

8|\_,o

e u(—x)dr = —i[S°Cou(=t)(-)(x) + C°S°u(~)(-)(x))],

2/6 Pt
0

p=izx,x € [0,+00),

—~~

with u(—t) = u(t),t € [0,00)) [2;3;5-8].

Conclusion

Results of the theorem 1 and proposition 2 probably are of interest for the further study
from point of physical applications.
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AnHoTtaums. JlokazaHa peryJsipHOCTb ABOHHOro npeo6pasoBaHus Jlamnaca B
OKpecTHOCTH HyJss. PaccmarprBaercs Kjace QyHKUHUH ¢ HapylleHUeM peryJsipHo-
ctu B Hyse. [Ipeo6pasoBanue Jlansaca ot npeo6pasoBanusi dypee oT QyHKLUUH U3
IAHHOTO KJacca PeryjaspHO B OKPECTHOCTH HyJsl. [lokasaHa nepecTaHOBOYHOCTh
CHHYC W KOCHHYC mnpeoOpa3oBaHuil Dypbe B yCJOBHUAX PEry/asipHOCTH IBOHHOIO
npeo6paszoBaHus Jlansnaca B OKpECTHOCTH HYJIS.

KuroueBsle cioBa: npeobpasoBanue Pypbe, npeobpazoBanue Jlamnaca, pe-
TYJSIPHOCTb IBOWHOTO Mpeobpa3oBaHus Jlamnaca, mepecTaHOBOUHOCTb CHHYC U KO-
cuHyc npeobpasoBaHuil Pypee.
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